Fantope Projection and Selection: A near-optimal convex relaxation of sparse PCA

本文主要探讨了使用子空间方法的稀疏主成分分析(PCA)。通过引入对角线矩阵的凸包约束,将非凸的稀疏PCA问题转化为接近最优的凸松弛问题。理论部分详细解释了如何从Ky Fan的最大主值原理出发,得到公式,并讨论了引入列稀疏性和行稀疏性的方法。提出了使用行稀疏性来选择重要特征,并以范数作为惩罚项。证明了在某些正则条件下,该方法在强一致性方面表现良好。最后,介绍了算法,包括使用交替方向乘子法(ADMM)求解问题,并提供了R包代码实现。
摘要由CSDN通过智能技术生成

1. Goal

This paper mainly deals with Sparse Principal Component Analysis(PCA) using subspace method.

2. Theorey

2.1 How to get their formulation

Notation: λ1,λ2,,λp are in decreasing order.
From Ky Fan’s maximum principal 1, we know that

i=1dλi(Σ)=tr(VΣV)=maxVV=Idtr(VΣV)=maxVV=IdΣ,VV

If we regard the last formula as a function of VV , it is linear. So if we change the constrain to its convex hull does not change the optimization problem. From the less well known observation that

Fdp={ H:trace(H)=d,0HId}=conv({ VV:VV=Id})

From all the analysis, we get

i=1dλi(Σ)=Σ,Π=maxHFdpΣ,H

How to introduce the sparsity? And which norm is suitable to use? The goal of this paper is to get sparse PCs, then we should choose penalty making VRp×d sparse. For matrix, there are two ways to get sparsity:

  • columnwise sparsity: for matrix A , each of its column is sparse, i.e. only few elements of Ai are nonzero.
  • row sparsity: for matrix A , its rows are sparse, i.e. only few rows of A are sparse, which produce the group sparsity.

For sparse PCA, to select the import features, this paper uses row sparsity. An intuitive penalty is V2,0 . But in high dimensional situation, 0 norm is NP hard to deal. A common trick is replacing 0 with 1 . Then the penalty becomes V2,1 . But our model is function of H=VV . So what sparsity on H can approximate well of V2,1 . Note that

H1,1=ijk|Vik||V
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值