Neural ODE逼近LLG方程

过程描述

要使用神经网络来学习和求解LLG方程,我们需要进行以下步骤:

  1. 定义一个神经网络,该网络将时间t和磁化矢量m作为输入,输出dm/dt。这个神经网络将学习到的是LLG方程的动态。

  2. 初始化神经网络的参数。

  3. 定义一个损失函数,该函数衡量神经网络的输出和真实的dm/dt之间的差距。

  4. 使用优化算法(如梯度下降)来调整神经网络的参数,以最小化损失函数。

在本文种我尝试讲数值求解LLG方程和神经网络逼近LLG方程的方法做了一个对比,部分内容使用chatgpt4做辅助补充,仅供参考,如有错误请指出,谢谢。


一、LLG方程是什么?

Landau-Lifshitz-Gilbert(LLG)方程是一种描述铁磁材料中磁化动力学的微分方程。这个方程由L.D. Landau,E.M. Lifshitz以及T. L. Gilbert独立提出,通常用于描述铁磁材料的磁矩如何随时间变化。LLG方程包括两个主要部分:预cession项和阻尼项。预cession项描述了磁矩在一个有效磁场中的旋转,阻尼项则表示了这个旋转是如何被阻尼的。

二、神经微分方程是什么(Neural ODE)

神经微分方程(Neural ODE)是一种使用神经网络来参数化微分方程的方法。这种方法的主要思想是:我们可以将一个深度神经网络看作是一个连续的、可以微分的映射函数,这个函数可以通过求解一阶微分方程来得到。在这种框架下,神经网络的训练过程就变成了一个寻找最优微分方程解的过程。

三、Neural ODE 逼近LLG方程的过程

Neural ODE逼近LLG方程的过程,首先需要设计我们的neural ODE神经网络,这个网络的任务是学习LLG方程。LLG函数方程的形式是一个微分方程,可以用神经网络来参数化。神经网络的Loss即为数值算法的结果和逼近结果的差值,因此我们可以通过loss的结果查看方程逼近的正确与否。

四、代码以及结果

import torch
import torch.nn as nn
from torchdiffeq import odeint
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

H_eff = torch.tensor([0.0, 0.0, 1.0])  # 定义H_eff
alpha = 0.1  # 定义阻尼常数


#写出真实的LLG方程
class ODEFunc(nn.Module):
    def forward(self, t, m):
        dm_dt = -torch.cross(m, H_eff, dim=0) - alpha * torch.cross(m, torch.cross(m, H_eff, dim=0), dim=0)
        return dm_dt

# 定义神经网络
class NeuralODE(nn.Module):
    def __init__(self):
        super(NeuralODE, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(3, 50),
            nn.Tanh(),
            nn.Linear(50, 3),
        )

    def forward(self, t, m):
        return self.net(m)

# 初始化神经网络和优化器
node = NeuralODE()
optimizer = torch.optim.Adam(node.parameters(), lr=0.01)

# 定义时间序列和初始磁化矢量
t = torch.linspace(0, 10, 1000)
m0 = torch.tensor([1.0, 0.0, 0.0])

# 使用真实的ODE函数生成训练数据
ode_func = ODEFunc()
with torch.no_grad():
    true_m = odeint(ode_func, m0, t)

# 训练神经网络
for epoch in range(2000):
    optimizer.zero_grad()
    pred_m = odeint(node, m0, t)
    loss = ((pred_m - true_m)**2).mean() #用神经网络拟合我们的LLG方程
    loss.backward()
    optimizer.step()

    if epoch % 100 == 0:
        print(f"Epoch: {epoch}, Loss: {loss.item()}")

# 绘制结果
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot(pred_m[:, 0].detach().numpy(), pred_m[:, 1].detach().numpy(), pred_m[:, 2].detach().numpy(), 'r-', label='Neural ODE')
ax.set_xlabel('Mx')
ax.set_ylabel('My')
ax.set_zlabel('Mz')
ax.legend()
plt.show()

可以看到,在训练过程中,损失一直在降低,最终的准确性已经非常接近。
在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
神经ODENeural ODE)是一种深度学习模型,它结合了神经网络和常微分方程ODE)的思想。神经ODE的核心思想在于将神经网络视为一个ODE的解,通过求解该ODE来完成模型的训练和推断。 传统的神经网络模型通常是由一系列的神经元层组成,信息在网络中从输入层传递到输出层,并通过反向传播来更新参数,以最小化损失函数。与之不同的是,神经ODE将输入层到输出层的传递过程看作是解ODE的过程。在这个过程中,网络的隐藏状态会随着时间(或称为深度)的推进而变化,而不是将信息直接传递给下一层。 具体来说,神经ODE可以通过一个ODE的求解器来实现,该求解器将隐藏状态视为ODE的解。通过使用ODE的求解器,可以在给定初始条件的情况下,推进隐藏状态的变化,并最终得到输出。这种求解器通常使用常见的数值方法,如欧拉法或Runge-Kutta法。 神经ODE的一个重要应用是在时间序列预测任务中,特别是对于具有长期依赖的序列数据。传统的循环神经网络(RNN)在处理长期依赖时往往面临梯度消失或爆炸等问题,而神经ODE可以更好地捕捉长期依赖关系。此外,神经ODE还可以用于生成模型、图像分类、自动编码器等其他任务。 总的来说,神经ODE是一种将神经网络和常微分方程相结合的深度学习模型。通过将网络的隐藏状态视为ODE的解,神经ODE可以更好地捕捉时间序列数据中的长期依赖关系,并应用于多种任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值