1143: [CTSC2008]祭祀river

1143: [CTSC2008]祭祀river

Time Limit: 10 Sec   Memory Limit: 162 MB
Submit: 2301   Solved: 1156
[ Submit][ Status][ Discuss]

Description

  在遥远的东方,有一个神秘的民族,自称Y族。他们世代居住在水面上,奉龙王为神。每逢重大庆典, Y族都
会在水面上举办盛大的祭祀活动。我们可以把Y族居住地水系看成一个由岔口和河道组成的网络。每条河道连接着
两个岔口,并且水在河道内按照一个固定的方向流动。显然,水系中不会有环流(下图描述一个环流的例子)。

 

  由于人数众多的原因,Y族的祭祀活动会在多个岔口上同时举行。出于对龙王的尊重,这些祭祀地点的选择必
须非常慎重。准确地说,Y族人认为,如果水流可以从一个祭祀点流到另外一个祭祀点,那么祭祀就会失去它神圣
的意义。族长希望在保持祭祀神圣性的基础上,选择尽可能多的祭祀的地点。

Input

  第一行包含两个用空格隔开的整数N、M,分别表示岔口和河道的数目,岔口从1到N编号。接下来M行,每行包

含两个用空格隔开的整数u、v,描述一条连接岔口u和岔口v的河道,水流方向为自u向v。 N ≤ 100 M ≤ 1 000

Output

  第一行包含一个整数K,表示最多能选取的祭祀点的个数。

Sample Input

4 4
1 2
3 4
3 2
4 2

Sample Output

2

【样例说明】
在样例给出的水系中,不存在一种方法能够选择三个或者三个以上的祭祀点。包含两个祭祀点的测试点的方案有两种:
选择岔口1与岔口3(如样例输出第二行),选择岔口1与岔口4。
水流可以从任意岔口流至岔口2。如果在岔口2建立祭祀点,那么任意其他岔口都不能建立祭祀点
但是在最优的一种祭祀点的选取方案中我们可以建立两个祭祀点,所以岔口2不能建立祭祀点。对于其他岔口
至少存在一个最优方案选择该岔口为祭祀点,所以输出为1011。

HINT

Source

[ Submit][ Status][ Discuss]

将原图的模型转换一下,如果两点连通,能由A走向B或B走向A,那么连边(A,B)(B,A)
题目要求就是在这样的图中找出最大独立集,或是说最长反链
参考了两篇blog才终于搞懂。。传送门1,,这里讲了一些基础概念
本题如果直接套用最少路径覆盖模板显然是错的
因为图中是让选一些链覆盖这张图,,这些链之间是允许有交集的
然后找到了一个在最少路径覆盖基础上建图的blog,传送门2
如果说最少路径覆盖那套理论是通过寻找后继节点
那这个新的图大概是通过对边权的修改和增边,允许寻找后继节点时通过其他节点,也就满足题设
注:此题A完后扩大数组,,bzoj2718双倍经验更快乐~
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<vector>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<bitset>
#include<ext/pb_ds/priority_queue.hpp>
using namespace std;

const int maxn = 444;
const int maxm = 4E5 + 40;
const int INF = ~0U>>1;

struct E{
	int to,cap,flow; E(){}
	E(int to,int cap,int flow): to(to),cap(cap),flow(flow){}
}edgs[maxm];

int n,m,s,t,tot,cnt,A[maxn],B[maxn],cur[maxn],L[maxn];
bool vis[maxn];

vector <int> v[maxn];
queue <int> Q;

void Add(int x,int y,int cap)
{
	v[x].push_back(cnt); edgs[cnt++] = E(y,cap,0);
	v[y].push_back(cnt); edgs[cnt++] = E(x,0,0);
}

bool BFS()
{
	for (int i = 0; i <= tot; i++) vis[i] = 0,L[i] = 0;
	vis[s] = 1; L[s] = 1; Q.push(s);
	while (!Q.empty())
	{
		int k = Q.front(); Q.pop();
		for (int i = 0; i < v[k].size(); i++)
		{
			E e = edgs[v[k][i]];
			if (e.cap == e.flow) continue;
			if (vis[e.to]) continue;
			vis[e.to] = 1; L[e.to] = L[k] + 1; Q.push(e.to);
		}
	}
	return vis[t];
}

int Dinic(int x,int a)
{
	if (x == t) return a;
	int flow = 0;
	for (int &i = cur[x]; i < v[x].size(); i++)
	{
		E &e = edgs[v[x][i]];
		if (e.cap == e.flow) continue;
		if (L[e.to] != L[x] + 1) continue;
		int f = Dinic(e.to,min(a,e.cap - e.flow));
		if (!f) continue;
		e.flow += f;
		edgs[v[x][i]^1].flow -= f;
		flow += f;
		a -= f;
		if (!a) return flow;
	}
	if (!flow) L[x] = 0;
	return flow;
}

int main()
{
	#ifdef DMC
		freopen("DMC.txt","r",stdin);
	#endif
	
	cin >> n >> m; t = ++tot;
	for (int i = 1; i <= n; i++) A[i] = ++tot,B[i] = ++tot;
	while (m--)
	{
		int x,y; scanf("%d%d",&x,&y);
		Add(A[x],B[y],INF);
	}
	for (int i = 1; i <= n; i++)
		Add(s,A[i],1),Add(B[i],t,1),Add(B[i],A[i],INF);
	
	int MaxFlow = 0;
	while (BFS())
	{
		for (int i = 0; i <= tot; i++) cur[i] = 0;
		MaxFlow += Dinic(s,INF);
	}
	cout << n - MaxFlow;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值