1005
题目:
题目描述
A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level belong to the same generation. Your task is to find the generation with the largest population.
输入描述:
Each input file contains one test case. Each case starts with two positive integers N (<100) which is the total number of family members in the tree (and hence assume that all the members are numbered from 01 to N), and M (<N) which is the number of family members who have children. Then M lines follow, each contains the information of a family member in the following format:
ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a family member, K (>0) is the number of his/her children, followed by a sequence of two-digit ID's of his/her children. For the sake of simplicity, let us fix the root ID to be 01. All the numbers in a line are separated by a space.
输出描述:
For each test case, print in one line the largest population number and the level of the corresponding generation. It is assumed that such a generation is unique, and the root level is defined to be 1.
输入例子:
23 13
21 1 23
01 4 03 02 04 05
03 3 06 07 08
06 2 12 13
13 1 21
08 2 15 16
02 2 09 10
11 2 19 20
17 1 22
05 1 11
07 1 14
09 1 17
10 1 18
输出例子:
9 4
算法分析:
树的层次遍历,求出拥有节点最多的层数及其节点数目。
(也可以记录每个节点的父亲,然后通过DFS递归求深度)
代码:
#include <iostream>
#include <vector>
#include <algorithm>
#include <queue>
using namespace std;
const int MAXN = 10001;
int N, M;
struct Tree {
int level = 0;
vector<int> kids;
}tree[MAXN];
void Input(void) {
cin >> N >> M;
for (int i = 1; i <= M; i++) {
int index, n;
cin >> index >> n;
if (1 == index)
tree[index].level = 1;
for (int j = 1; j <= n; j++) {
int temp;
cin >> temp;
tree[index].kids.push_back(temp);
}
}
}
//树的层次遍历
void LevelOrder(void) {
queue<Tree> q;
q.push(tree[1]);
while (!q.empty()) {
Tree temp = q.front();
q.pop();
for (int i = 0; i < temp.kids.size(); i++) {
tree[temp.kids.at(i)].level = temp.level + 1;
q.push(tree[temp.kids.at(i)]);
}
}
return;
}
int main(void) {
Input();
LevelOrder();
int level[101]; fill(level, level + 101, 0);
int maxlevel = 0, maxcount = 0, levelindex = 0;
for (int i = 1; i <= N; i++) {
level[tree[i].level]++;
if (maxlevel < tree[i].level)
maxlevel = tree[i].level;
}
for (int i = 1; i <= maxlevel; i++)
if (maxcount < level[i]) {
maxcount = level[i];
levelindex = i;
}
cout << maxcount << " " << levelindex << endl;
system("pause");
return 0;
}