用CNN对CIFAR10进行分类(pytorch)

该博客通过PyTorch实现了一个卷积神经网络(CNN)来对CIFAR10数据集进行图像分类。首先介绍了CIFAR10数据集的基本信息,然后详细描述了数据加载、网络架构的设计以及训练过程,包括损失函数的输出和在验证集上的性能评估。

CIFAR10有60000个\(32*32\)大小的有颜色的图像,一共10种类别,每种类别有6000个。

训练集一共50000个图像,测试集一共10000个图像。

先载入数据集
import numpy as np
import torch
import torch.optim as optim

from torchvision import datasets
import torchvision.transforms as transforms

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

trainset = datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值