CIFAR10基于pytorch卷积神经网络(cnn)实战

本文介绍了如何使用PyTorch实现CIFAR10数据集上的卷积神经网络(CNN)。从导入库到载入数据,再到构建神经网络结构,包括卷积层、池化层和全连接层,最后通过反向传播优化网络,并测试模型性能,最后保存模型以备后续使用。
摘要由CSDN通过智能技术生成

 1、导入相关库

import torch
import torch.nn as nn  #神经网络库
import torchvision #下载数据集,图像转换
from torchvision import transforms,datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

2、载入数据

transform = transforms.Compose([ #定义transform
    transforms.ToTensor(),#将图片由numpy类型转换为tensor类型,torch中数据类型为张量,tensor类型
    transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))#归一化,0.5可自定义,范围在【-1,1】、
])

trainset = datasets.CIFAR10(root="D:/cifar10",train=True,download=True,transform=transform)#下载训练集,root表示存放路径,train为训练集,trandform表示对数据进行转换
testset = datasets.CIFAR10(root="D:/cifar10",train=False,download=True,transform=transform)#下载测试集,方法与训练集相

3、创建类

classes = {"plane","car","bird","cat","deer","dog","frog",&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值