可信数据空间和隐私计算常见术语总结

图片

1.可信数据空间。可信数据空间是基于共识规则,联接多方主体,实现数据资源共享共用的数据流通利用基础设施,是数据要素价值共创的应用生态,是支撑构建全国一体化数据市场的重要载体。可信数据空间须具备数据可信管控、资源交互、价值创造三类核心能力。本文件所称可信数据空间、数据空间、空间的含义相同。(可信数据空间(Trusted Data Space, TDS)是指一个安全、受控的环境,用于存储、管理和共享数据,确保数据在整个生命周期内的机密性、完整性和可用性。TDS旨在建立数据提供者和数据使用者之间的信任,使得各方可以在符合法律、法规和政策的前提下,安全地交换和使用数据。)

2.可信管控能力。可信数据空间核心能力之一,包括对空间内主体身份、数据资源、产品服务等开展可信认证,确保数据流通利用全过程的动态管控,提供实时存证和结果可追溯。

3.资源交互能力。可信数据空间核心能力之一,支持不同来源数据资源、产品和服务在可信数据空间的统一发布、高效查询、跨主体互认,实现跨空间的身份互认、资源共享和服务共用。

4.价值创造能力。可信数据空间核心能力之一,支持多主体在可信数据空间规则约束下共同参与数据开发利用,推动数据资源向数据产品或服务转化,并保障参与各方的合法权益。

5.可信数据空间运营者。在可信数据空间中负责日常运营和管理的主体,制定并执行空间运营规则与管理规范,促进参与各方共建、共享、共用可信数据空间,保障可信数据空间的稳定运行与安全合规。可信数据空间运营者可以是独立的第三方,也可以由数据提供方、数据服务方等主体承担。

6.数据提供方。在可信数据空间中提供数据资源的主体,有权决定其他参与方对其数据的访问、共享和使用权限,并有权在数据创造价值后,根据约定分享相应权益。

7.数据使用方。在可信数据空间中使用数据资源的主体,依据与可信数据空间运营者、数据提供方等签订的协议,按约加工使用数据资源、数据产品和服务。

8.数据服务方。在可信数据空间中提供各类服务的主体,包括数据开发、数据中介、数据托管等类型,提供数据开发应用、供需撮合、托管运营等服务。

9.可信数据空间监管方。指履行可信数据空间监管责任的政府主管部门或授权监管的第三方主体,负责对可信数据空间的各项活动进行指导、监督和规范,确保可信数据空间运营的合规性。

10.数据生态体系。数据提供方、数据使用方、数据服务方、可信数据空间运营者等,依据既定规则,围绕数据资源的流通、共享、开发、利用进行互动和协作,共同构建的以价值共创为导向的生态系统。

11.使用控制。一种可信管控技术,通过预先设置数据使用条件形成控制策略,依托控制策略实时监测数据使用过程,动态决定数据操作的许可或拒绝。

12.隐私计算。一种可信管控技术,允许在不泄露原始数据的前提下进行数据的分析和计算,旨在保障数据在产生、存储、计算、应用、销毁等数据流转全过程的各个环节中“可用不可见”。隐私计算的常用技术方案有多方安全计算、联邦学习、可信执行环境、密态计算等。

13.数据沙箱。一种可信管控技术,通过构建一个应用层隔离环境,允许数据使用方在安全和受控的区域内对数据进行分析处理。数据沙箱是一个隔离的数据环境,它允许用户在不受外部干扰的情况下,安全地分析和处理数据。数据沙箱为数据科学家、分析师等提供了一个实验场所,让他们可以在不影响生产环境的前提下,测试新的数据分析方法和模型。通过数据沙箱,企业可以更好地保护敏感数据,同时促进数据的创新应用。

14.可信执行环境。数据领域名词,是指提供基于硬件级的系统隔离和可信根,支持基于技术信任的数据安全保障能力,保证在安全区域内部加载的代码和数据在保密性和完整性方面得到保护。

15.联邦学习(Federated Learning)。是一种先进的分布式机器学习方法,它在数据隐私保护和数据利用效率方面具有显著的优势。在联邦学习中,多个参与方(也称为客户端或节点)可以在保持数据本地化的同时,共享模型训练的成果。联邦学习允许多个参与方(通常是设备或服务器)在保持数据隐私和本地化的前提下,共同训练一个共享的机器学习模型。在联邦学习中,数据不需要被传输到一个中心服务器上,从而减少了数据泄露的风险。参与方使用自己的数据独立训练模型,然后将模型更新(如梯度或模型参数)发送到中心服务器。中心服务器负责收集所有参与方的模型更新,并使用一定的算法(如平均、加权平均等)来聚合这些更新,形成全局模型。聚合后的全局模型更新被发送回给参与方,参与方使用这些更新来改进自己的模型。

16.智能合约。基于计算机协议的合同形式,以信息化方式传播、验证和执行,支持无需第三方的可信交易,确保交易的可追踪性和不可逆转性。

17.数据标识。一种资源互通技术,通过为数据资源分配唯一标识符,实现快速准确的数据检索和定位,实现数据全生命周期的可追溯性和可访问性。

18.语义发现。一种资源互通技术,通过自动分析理解数据深层含义及其关联性,实现不同来源和类型数据的智能索引、关联和发现。

19.元数据智能识别。一种资源互通技术,将元数据从一种格式转换为另一种格式,包括并不限于对数据的属性、‌关系和规则进行重新定义,以‌确保数据在不同系统中的一致性和可理解性。

20.数据价值评估模型。一种从多维度衡量数据价值的算法模型,综合考虑数据的质量、‌来源、‌用途等因素,评估数据对业务经济效益的影响。

21.共性服务。可信数据空间的共性功能需求,可以提供通用化的服务,包括并不限于接入认证、可信存证、资源目录等功能。适宜统一建设,以避免重复建设,提升服务效率和质量。

22.接入认证。一种可信数据空间共性服务,按照统一标准,对接入可信数据空间的主体、技术工具、服务等开展能力评定,确保其符合国家相关政策和标准规范要求。‌

23.可信存证。一种可信数据空间共性服务,保存数据流通全过程信息记录并不可篡改,为清算审计、纠纷仲裁提供电子证据,确保全过程行为可追溯。

24.资源目录。一种可信数据空间共性服务,按照统一接口标准建设,提供数据、服务等资源的发布与发现能力。可同时被多个可信数据空间使用。

25.数据指纹。数据指纹是一种用于唯一标识数据文件的算法生成值。它类似于文件的“数字签名”,可以确保数据文件的完整性和真实性。通过数据指纹,企业可以检测数据是否被篡改或损坏,保护数据的安全性和可信度。数据指纹在数据审计、数据备份和恢复等方面具有广泛应用。

26.数据标注。数据标注是为数据资源分配的唯一标识符,它类似于数据的“身份证”。通过数据标识,可以实现对数据的快速检索与精准定位,确保数据在不同系统、不同平台之间的唯一性和可识别性。数据标注是数据互通的基础,它促进了数据的共享、交换和流通,提高了数据的使用效率和价值。数据标注是大部分人工智能算法得以有效运行的关键环节。简单来说,数据标注是对未经处理过的语音、图片、文本、视频等数据进行加工处理,从而转变成机器可识别信息的过程。通过大量标注数据的训练,人工智能模型逐渐学会了如何分析和处理信息,进而实现各种智能化应用。

数据标注主要分为以下几种类型:

图片


参考链接:

关于向社会公开征求《可信数据空间发展行动计划(2024—2028年)》意见的公告

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Java架构何哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值