3.6 RDD 持久化
在实际开发中某些RDD的计算或转换可能会比较耗费时间,如果这些RDD后续还会频繁的被使用到,那么可以将这些RDD进行持久化/缓存,这样下次再使用到的时候就不用再重新计算了,提高了程序运行的效率。
缓存函数
可以将RDD数据直接缓存到内存中,函数声明如下:
但是实际项目中,不会直接使用上述的缓存函数,RDD数据量往往很多,内存放不下的。在实际的项目中缓存RDD数据时,往往使用如下函数,依据具体的业务和数据量,指定缓存的级别:
缓存级别
在Spark框架中对数据缓存可以指定不同的级别,对于开发来说至关重要,如下所示:
实际项目中缓存数据时,往往选择如下两种级别:
缓存函数与Transformation函数一样,都是Lazy操作,需要Action函数触发,通常使用count函数触发。
释放缓存
当缓存的RDD数据,不再被使用时,考虑释资源,使用如下函数:
此函数属于eager,立即执行。
何时缓存数据
在实际项目开发中,什么时候缓存RDD数据,最好呢???
第一点:当某个RDD被使用多次的时候,建议缓存此RDD数据
- 比如,从HDFS上读取网站行为日志数据,进行多维度的分析,最好缓存数据
第二点:当某个RDD来之不易,并且使用不止一次,建议缓存此RDD数据 - 比如,从HBase表中读取历史订单数据,与从MySQL表中商品和用户维度信息数据,进行关联Join等聚合操作,获取RDD:etlRDD,后续的报表分析使用此RDD,此时建议缓存RDD数据
- 案例:etlRDD.persist(StoageLeval.MEMORY_AND_DISK_2)
演示范例代码:
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.{SparkConf, SparkContext}
/**
* RDD中缓存函数,将数据缓存到内存或磁盘、释放缓存
*/
object SparkCacheTest {
def main(args: Array[String]): Unit = {
// 创建应用程序入口SparkContext实例对象
val sc: SparkContext = {
// 1.a 创建SparkConf对象,设置应用的配置信息
val sparkConf: SparkConf = new SparkConf()
.setAppName(this.getClass.getSimpleName.stripSuffix("$"))
.setMaster("local[2]")
// 1.b 传递SparkConf对象,构建Context实例
new SparkContext(sparkConf)
}
// 读取文本文件数据
val inputRDD: RDD[String] = sc.textFile("datas/wordcount/wordcount.data", minPartitions = 2)
// 缓存数据: 将数据缓存至内存
inputRDD.cache()
inputRDD.persist()
// 使用Action函数触发缓存
println(s"Count = ${inputRDD.count()}")
// 释放缓存
inputRDD.unpersist()
// 缓存数据:选择缓存级别
/*
val NONE = new StorageLevel(false, false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
val MEMORY_ONLY = new StorageLevel(false, true, false, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
val OFF_HEAP = new StorageLevel(true, true, true, false, 1)
*/
inputRDD.persist(StorageLevel.MEMORY_AND_DISK)
println(s"count: ${inputRDD.count()}")
// 应用程序运行结束,关闭资源
sc.stop()
}
}
第四章 SogouQ日志分析
使用搜狗实验室提供【用户查询日志(SogouQ)】数据,使用Spark框架,将数据封装到RDD中进行业务数据处理分析。数据网址:http://www.sogou.com/labs/resource/q.php
-
1)、数据介绍:搜索引擎查询日志库设计为包括约1个月(2008年6月)Sogou搜索引擎部分网页查询需求及用户点击情况的网页查询日志数据集合。
-
2)、数据格式
- 访问时间\t用户ID\t[查询词]\t该URL在返回结果中的排名\t用户点击的顺序号\t用户点击的URL
- 用户ID是根据用户使用浏览器访问搜索引擎时的Cookie信息自动赋值,即同一次使用浏览器输入的不同查询对应同一个用户ID
- 访问时间\t用户ID\t[查询词]\t该URL在返回结果中的排名\t用户点击的顺序号\t用户点击的URL
-
3)、数据下载:分为三个数据集,大小不一样
- 迷你版(样例数据, 376KB):http://download.labs.sogou.com/dl/sogoulabdown/SogouQ/SogouQ.mini.zip
- 精简版(1天数据,63MB):http://download.labs.sogou.com/dl/sogoulabdown/SogouQ/SogouQ.reduced.zip
- 完整版(1.9GB):http://www.sogou.com/labs/resource/ftp.php?dir=/Data/SogouQ/SogouQ.zip
4.1 业务需求
针对SougoQ用户查询日志数据中不同字段,不同业务进行统计分析:
使用SparkContext读取日志数据,封装到RDD数据集中,调用Transformation函数和Action函数处理分析,灵活掌握Scala语言编程。
4.2 准备工作
在编程实现业务功能之前,首先考虑如何对【查询词】进行中文分词及将日志数据解析封装。
HanLP 中文分词
使用比较流行好用中文分词:HanLP,面向生产环境的自然语言处理工具包,HanLP 是由一系列模型与算法组成的 Java 工具包,目标是普及自然语言处理在生产环境中的应用。
官方网站:http://www.hanlp.com/,添加Maven依赖
<!-- https://mvnrepository.com/artifact/com.hankcs/hanlp -->
<dependency>
<groupId>com.hankcs</groupId>
<artifactId>hanlp</artifactId>
<version>portable-1.7.7</version>
</dependency>
演示范例:HanLP 入门案例,基本使用
import java.util
import com.hankcs.hanlp.HanLP
import com.hankcs.hanlp.seg.common.Term
import com.hankcs.hanlp.tokenizer.StandardTokenizer
import scala.collection.JavaConverters._
/**
* HanLP 入门案例,基本使用
*/
object HanLPTest {
def main(args: Array[String]): Unit = {
// 入门Demo
val terms: util.List[Term] = HanLP.segment("杰克奥特曼全集视频")
println(terms)
println(terms.asScala.map(_.word.trim))
// 标准分词
val terms1: util.List[Term] = StandardTokenizer.segment("放假++端午++重阳")
println(terms1)
println(terms1.asScala.map(_.word.replaceAll("\\s+", "")))
val words: Array[String] =
"""00:00:00 2982199073774412 [360安全卫
士] 8 3 download.it.com.cn/softweb/software/firewall/antivirus/20067/17938.html"""
.split("\\s+")
words.foreach(println)
println(words(2).replaceAll("\\[|\\]", ""))
}
}
样例类 SogouRecord
将每行日志数据封装到CaseClass样例类SogouRecord中,方便后续处理:
/**
* 用户搜索点击网页记录Record
* @param queryTime 访问时间,格式为:HH:mm:ss
* @param userId 用户ID
* @param queryWords 查询词
* @param resultRank 该URL在返回结果中的排名
* @param clickRank 用户点击的顺序号
* @param clickUrl 用户点击的URL
*/
case class SogouRecord(
queryTime: String, //
userId: String, //
queryWords: String, //
resultRank: Int, //
clickRank: Int, //
clickUrl: String //
)
4.3 业务实现
先读取数据,封装到SougoRecord类中,再按照业务处理数据。
读取数据
构建SparkContext实例对象,读取本次SogouQ.sample数据,封装到SougoRecord中 。
// TODO: 1. 本地读取SogouQ用户查询日志数据
//val rawLogsRDD: RDD[String] = sc.textFile("datas/sogou/SogouQ.sample")
val rawLogsRDD: RDD[String] = sc.textFile("datas/sogou/SogouQ.reduced")
//println(s"Count = ${rawLogsRDD.count()}")
// TODO: 2. 解析数据,封装到CaseClass样例类中
val recordsRDD: RDD[SogouRecord] = rawLogsRDD
// 过滤不合法数据,如null,分割后长度不等于6
.filter(log => null != log && log.trim.split("\\s+").length == 6)
// 对每个分区中数据进行解析,封装到SogouRecord
.mapPartitions{iter =>
iter.map{log =>
val arr: Array[String] = log.trim.split("\\s+")
SogouRecord(
arr(0), arr(1), arr(2).replaceAll("\\[|\\]", ""), //
arr(3).toInt, arr(4).toInt, arr(5) //
)
}
}
println(s"Count = ${recordsRDD.count()}, First = ${recordsRDD.first()}")
搜索关键词统计
获取用户【查询词】,使用HanLP进行分词,按照单词分组聚合统计出现次数,类似WordCount
程序,具体代码如下:
// =================== 3.1 搜索关键词统计 ===================
// a. 获取搜索词,进行中文分词
val wordsRDD: RDD[String] = recordsRDD.mapPartitions{iter =>
iter.flatMap{record =>
// 使用HanLP中文分词库进行分词
val terms: util.List[Term] = HanLP.segment(record.queryWords.trim)
// 将Java中集合对转换为Scala中集合对象
import scala.collection.JavaConverters._
terms.asScala.map(term => term.word)
}
}
//println(s"Count = ${wordsRDD.count()}, Example = ${wordsRDD.take(5).mkString(",")}")
// b. 统计搜索词出现次数,获取次数最多Top10
val top10SearchWords: Array[(Int, String)] = wordsRDD
.map(word => (word, 1)) // 每个单词出现一次
.reduceByKey((tmp, item) => tmp + item) // 分组统计次数
.map(tuple => tuple.swap)
.sortByKey(ascending = false) // 词频降序排序
.take(10) // 获取前10个搜索词
top10SearchWords.foreach(println)
运行结果如下,仅仅显示搜索最多关键词,其中需要过滤谓词:
用户搜索点击统计
统计出每个用户每个搜索词点击网页的次数,可以作为搜索引擎搜索效果评价指标。先按照用
户ID分组,再按照【查询词】分组,最后统计次数,求取最大次数、最小次数及平均次数。
// =================== 3.2 用户搜索点击次数统计 ===================
/*
每个用户在搜索引擎输入关键词以后,统计点击网页数目,反应搜索引擎准确度
先按照用户ID分组,再按照搜索词分组,统计出每个用户每个搜索词点击网页个数
*/
val clickCountRDD: RDD[((String, String), Int)] = recordsRDD
.map{record =>
// 获取用户ID和搜索词
val key = record.userId -> record.queryWords
(key, 1)
}
// 按照用户ID和搜索词组合的Key分组聚合
.reduceByKey((tmp, item) => tmp + item)
clickCountRDD
.sortBy(tuple => tuple._2, ascending = false)
.take(10).foreach(println)
println(s"Max Click Count = ${clickCountRDD.map(_._2).max()}")
println(s"Min Click Count = ${clickCountRDD.map(_._2).min()}")
println(s"Avg Click Count = ${clickCountRDD.map(_._2).mean()}")
程序运行结果如下:
搜索时间段统计
按照【访问时间】字段获取【小时】,分组统计各个小时段用户查询搜索的数量,进一步观察
用户喜欢在哪些时间段上网,使用搜狗引擎搜索,代码如下:
// =================== 3.3 搜索时间段统计 ===================
/*
从搜索时间字段获取小时,统计个小时搜索次数
*/
val hourSearchRDD: RDD[(String, Int)] = recordsRDD
// 提取小时
.map{record =>
// 03:12:50
record.queryTime.substring(0, 2)
}
// 分组聚合
.map(word => (word, 1)) // 每个单词出现一次
.reduceByKey((tmp, item) => tmp + item) // 分组统计次数
.sortBy(tuple => tuple._2, ascending = false)
hourSearchRDD.foreach(println)
程序运行结果如下: