💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
三、考虑需求响应的微电网优化调度模型构建四、改进MOGWO在微电网调度中的应用案例
💥1 概述
如今,多目标优化技术广泛应用于:机械工程、土木工程和化工等研究领域。早期的多目标随机优
化算法多为单目标优化算法转化而来,例如:SPEA[7]、NSGA-Ⅱ[8]、MOPSO[9]和 MOEA/D[10]等应用广泛的优化算法。文献[11]提出了一种基于灰狼优化 算 法 (GWO) 提 出 的 多 目 标 灰 狼 优 化 算 法 (MOGWO),该算法具有收敛快、实现简单的特点,并且在多目标基准测试函数中表现出优于 MOPSO和 MOEA/D 的性能,具有应用推广的潜力。然而,相同的优化算法在不同的实际问题中的优化性能无 法得到保证,其在微电网多目标优化问题的适用性尚待验证。
目前大多数优化问题为高度复杂和多约束的非线性问题,尤其是微电网的优化调度问题.传统方
法在处理上述优化问题时容易陷入局部最优或者维数灾难.随着智能算法的提出上述问题得到了较好解决.文献[2]提出一种混合蝙蝠算法来处理结合热发电机和风力涡轮机的经济调度问题.文献[3]提出一种多层次的蚁群算法解决微电网的能量调度问题.文献[4]用重力搜索算法解决经济与环境负荷调度问题.文献[5]提出一种量子粒子群算法来解决考虑风电不确定性与碳税的经济调度问题.
微电网模型主要包括发电侧和需求侧.发电侧包括柴油发电机、可再生能源和储能电池,需求侧
为用户的需求响应.可再生能源包括风能系统和光伏系统.由于风机和光伏阵列的输出功率具有不确定性,因此不能进行直接调度,只能根据气候等条件对其输出功率进行建模预测.
灰狼优化算法是 Mirjalili 等[13]受狼群合作捕食过程启发而提出的新型群体智能优化算法。2015 年,又 在 此 基 础 上 提 出 了 多 目 标 灰 狼 优 化 算 法 (MOGWO)。灰狼群可分为四个阶层,分别为、
和
。灰狼优化算法就是参考灰狼的捕食过程建立的。在灰狼优化算法中
将每次迭代中目标函数值最优的三个位置依次分配给、
和
,其余个体根据这三个最优个体位置更新自己的位置。相较于 GWO,MOGWO 中引入了外部种群 Archive 并对
、
和
的
选择策略进行了改动。Archive 用于储存每一代产生的优秀个体,即非支配解。并且按照一定的策略进行更新和删除。MOGWO 算法直接从 Archive 采用轮盘赌的方式选择三只优秀个体作为、
和
。最终,外部种群 Archive 中的个体即为优化问题的一组Pareto 最优解。
考虑需求响应的基于改进多目标灰狼算法的微电网优化调度研究
一、微电网调度的基本框架与需求响应机制
微电网是由分布式电源(光伏、风电、储能、微型燃气轮机等)、可控负荷和电网接口构成的独立能源系统,具备并网与孤岛双模式运行能力。其调度目标包括经济性(运行成本最小化)、环保性(碳排放最低)、可靠性(功率平衡与电压稳定)等多维度优化。需求响应(DR)作为主动负荷管理手段,通过价格激励或补偿机制调整用户用电行为,实现削峰填谷,降低微电网对主电网的依赖。例如,分时电价(TOU)和实时电价(RTP)属于价格型DR,而可中断负荷补偿属于激励型DR。
二、多目标灰狼优化算法(MOGWO)的原理与改进方向
-
基础算法原理
MOGWO模拟灰狼群体狩猎行为,将解空间中的最优解视为α、β、δ狼,通过围猎机制更新种群位置。其核心改进包括:- 存档机制:存储非支配解(Pareto前沿),避免陷入局部最优。
- 头狼选择策略:基于拥挤距离和Pareto支配关系选择头狼,保持解集多样性。
- 收敛因子动态调整:如采用余弦函数或幂函数优化收敛速度,平衡全局搜索与局部开发能力。
-
改进方向
- 混沌初始化:通过Tent混沌映射生成初始种群,增强全局搜索能力。
- 自适应权重:引入动态权重调整灰狼位置更新公式,提高算法对复杂约束的适应性。
- 混合策略:结合快速非支配排序与精英保留策略,优化解集质量。
三、考虑需求响应的微电网优化调度模型构建四、改进MOGWO在微电网调度中的应用案例
-
算法改进与求解流程
- 分时段编码:将24小时调度问题分解为时段组,分别优化设备出力,减少计算复杂度。
- 多目标处理:采用Pareto排序与拥挤距离筛选,生成均衡解集。
- 动态参数调整:收敛因子a按指数规律衰减(如a=2·(1-(t/T)^4)),提升收敛速度。
-
仿真结果分析
- 经济性对比:改进MOGWO相比传统PSO和NSGA-II,运行成本降低8%~12%。
- 环保效益:碳排放减少15%~20%,尤其在风光高渗透率场景下效果显著。
- 解集分布性:Pareto前沿显示,成本与排放存在明显权衡关系,用户可根据需求选择折衷方案。
五、与传统算法的性能对比
- 收敛速度:MOGWO因围猎机制和存档策略,迭代次数减少30%~40%。
- 解集质量:在标准测试函数中,改进MOGWO的HV(超体积)指标优于MOPSO和MOEA/D。
- 鲁棒性:对风光出力波动和负荷不确定性的适应能力更强,调度方案波动率降低25%。
六、未来研究方向
- 深度强化学习融合:结合DRL处理实时调度中的高维状态空间。
- 多时间尺度协同:整合日前、时内、实时调度模型,提升响应灵活性。
- 用户行为建模:引入云模型或Sigmoid函数量化DR参与度与响应不确定性。
结论
改进MOGWO通过分时段编码、混沌初始化和动态收敛因子,有效解决了微电网多目标调度的复杂性与不确定性。结合价格型与激励型DR机制,可实现经济性、环保性与用户满意度的协同优化。未来需进一步探索算法在动态场景下的实时性与可扩展性,为微电网参与电力市场交易提供理论支撑。
📚2 运行结果
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]戚艳,尚学军,聂靖宇,霍现旭,邬斌扬,苏万华.基于改进多目标灰狼算法的冷热电联供型微电网运行优化[J].电测与仪表,2022,59(06):12-19+52.DOI:10.19753/j.issn1001-1390.2022.06.002.
[2]沈艳军,杨博.需求响应的微电网优化调度及改进的蝙蝠算法[J].华中科技大学学报(自然科学版),2020,48(02):120-125.DOI:10.13245/j.hust.200221.