LDG:基于DyREP的动态图表示

Learning temporal attention in dynamic graphs with bilinear interactions

作者是Boris Knyazev, Carolyn Augusta, and Graham W. Taylor,于2020年发表。

背景知识

  1. DyREP提出,动态图中边分为2种:
    k = 0:Long-term association,如网络中节点增加、边的增加,导致邻接矩阵A改变。
    k = 1:Communication,已有节点之间的交互,不会引入新的节点和新的边,无论他们之间的long-term association是否存在。
  2. 四元组表示event:时间戳表示发生事件时间。
    在这里插入图片描述

提出问题

如何学习动态图中的节点表达?
存在问题:

  • 长期存在的边更依赖于人工标记,如DyREP。
  • DyREP中邻居节点聚合只是使用简单的拼接。

相关工作

DynGem,DySAT,DynamicTriad,GC-LSTM,DyGGNN

解决方法

本文提出了LDG方法,这是基于DyREP并结合了NRI,在动态图中学习temporal attention。

节点更新

在这里插入图片描述
第2项是节点embedding的自传播,第3项是时间差的一个函数。重点介绍第1项:聚合邻居。
Temporal Attention
在这里插入图片描述
聚合的是一阶邻居特征,不同:DyREP利用已知的A更新temporal weights - S;LDG基于NRI,不需要使用A,即未知连边类型。只使用上一个时间点所有节点的embedding,经过2轮的encoder得到时序权重,并且更新了连边的表示。
在这里插入图片描述

举例:节点 u 和 v 之间在时间 t 发生连边。

  • 第1轮使用了上一个时间点的所有节点 j 的表达
  • 第2轮最后只计算 u 和 v 之间连边的 h 。

在这里插入图片描述
最后u和v之间的时序注意力S的表达为:
在这里插入图片描述
特别注意的是,这里边的类型是未知的,有r种(DyREP是2种),即S不是一维的:
在这里插入图片描述

损失函数

本文提出的损失函数包括了真实发生的event和随机产生的non-event,
在这里插入图片描述
这里的损失函数使用了一种强度函数,并且是符合 xWy 的双线性变换,作者认为DyREP只是使用简单的拼接,只能得到 xW 或者 yW 的信息。
在这里插入图片描述

实验

采用了social evolution 和 GitHub 这2个数据集进行链路预测任务。论文的源码和数据集在Github可以找到。

贡献

  • 动态图节点更新不再依赖于邻接矩阵,只需要上一个时间点的节点表达来学习temporal attention。
  • 在DyREP的基础上拓展为多关系图,可以研究多种类型的边。
  • bilinear layer更加能捕捉节点之间的信息。

相关思考

  • temporal attention这里是使用了2层encoder,是否有更好的方法?
  • 损失函数的设计
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值