文献阅读(52)ICLR2021-Learnable Embedding Sizes for Recommender Systems

本文是对《Learnable Embedding Sizes for Recommender Systems》一文的浅显翻译与理解,如有侵权即刻删除。

朋友们,我们在github创建了一个图学习笔记库,总结了相关文章的论文、代码和我个人的中文笔记,能够帮助大家更加便捷地找到对应论文,欢迎star~

Chinese-Reading-Notes-of-Graph-Learning

更多相关文章,请移步:文献阅读总结:网络表示学习/图学习

Title

《Learnable Embedding Sizes for Recommender Systems》

——ICLR2021

Author: Siyi Liu

总结

笔记参考:https://zhuanlan.zhihu.com/p/389037631

文章认为在网络表征学习和推荐系统模型中,固定的嵌入维度大小会造成大量的存储损耗和计算时长,而对维度的削减又会带来明显的效果下降。因此文章提出了PEP算法,通过为不同重要程度的特征设计不同的维度大小,来在大幅度减小模型参数量的同时保持模型原有效果。

1 问题定义

文章首先给出了基于特征的推荐系统模型通用表示,即该文章提出的方法能够广泛应用于各类基于特征的推荐系统模型中。具体而言,推荐模型将用户和商品的属性组合作为其输入向量x,其特征数设为M,则有:

在这里插入图片描述

根据特征向量x,可以生成对应的嵌入向量v有:

在这里插入图片描述

其中V_i是第i个特征域的嵌入矩阵,有:

在这里插入图片描述

在进行模型预测时,往往通过V与其他参数得到预测结果:

在这里插入图片描述

其中y^表示预测的概率,在模型训练过程中,为学习模型参数,将对如下损失进行优化:

在这里插入图片描述

其中D={x,y}表示输入到模型中的数据,x表示输入特征,y表示真实标签,这一优化目标的经典损失函数为:

在这里插入图片描述

以上即为推荐模型的通用训练流程,即给出特征和真实标签,通过对特征进行向量化处理来做标签预测,再将预测标签和真实标签做损失进一步缩小其差距。文章目的就在于,对特征进行向量化时,不同重要程度的特征会被分配不同的嵌入维度大小。

2 算法介绍

文章提出了PEP模型(Plug-in Embedding Pruning),目的在于对不同的特征嵌入执行不同的维度大小。然而不同维度的嵌入在存储时较为不便,因此文章采用归0的方法来达到剪枝效果,即对需要裁剪的维度位置进行归0化,使得其在实际计算中不起作用,见下图。

在这里插入图片描述

基于这一思想,文章设定了阈值k,即要求嵌入矩阵V中非零值不能大于等于k个:

在这里插入图片描述

其中||V||_0为L0范数,k为参数阈值。然而,由于L0范数约束的非凸性,使得优化该目标成为了一个NP难问题。虽然有先前工作对该范数进行扩展为L1,但在计算过程中仍然有着巨大的计算成本,且在这种情况下阈值k需要人为设置。

考虑到不同特征的重要性不同,人为设置阈值往往只能达到局部最优的结果。因此,文章受软阈值重参数化(Soft Threshold Reparameterization)的启发,通过梯度下降来更新阈值s,进而对V实现剪枝操作。

在这里插入图片描述

其中,sign函数会使得矩阵中正值归1,负值归-1,0值不动。从而,引入PEP框架后的通用优化模型变为:

在这里插入图片描述

在执行反向传播梯度优化的过程中,V的值将会更新如下:

在这里插入图片描述

为解决S的不可微性,文章使用次梯度优化来调整更新公式为:

在这里插入图片描述

在修剪完嵌入维度后,还要重新更新回模型进行训练。文章会保留原始模型的参数值,在维度剪枝完成后,返回原模型训练时,将这些参数值作为新的初始化值写回。

上述维度剪枝方法为全局剪枝,文章还给出了不同粒度的剪枝策略:

(1)维度粒度,阈值会被设置为一个维度为d的向量来对应嵌入维度,在特征嵌入中的不同维度值都会被独立修剪。

(2)特征粒度,阈值会被设置为一个维度为N的向量来对应特征数量,从而对不同的特征嵌入进行修剪。

(3)特征-维度粒度,阈值s会被设置为d*N的矩阵,来执行上述两种剪枝策略,以完成最细粒度的修剪。

3 代码

文章的伪代码如下:

在这里插入图片描述

文章提到,PEP是一个通用的框架,能够搭建在任意推荐模型上,事实上其实现过程也非常简便,基于pytorch的代码实现如下:

在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
《自适应通用广义PageRank图神经网络》是在ICLR2021中发布的一篇论文。这篇论文提出了一种新的图神经网络模型,称为自适应通用广义PageRank图神经网络。 传统的图神经网络通常使用节点和边的特征来进行节点分类和链接预测等任务,但在处理大规模图时存在计算复杂度高和难以处理隐含图结构的问题。为了解决这些问题,这篇论文引入了PageRank算法和广义反向传播法,在保留图结构信息的同时有效地处理大规模图数据。 这个模型的核心思想是将PageRank算法和图神经网络相结合,通过模拟随机游走过程对节点和边进行随机采样,并利用广义反向传播法将PageRank值传播给相邻的节点。通过这种方式,网络可以在保留图结构信息的同时,有效地进行节点嵌入和预测任务。 另外,这篇论文还提出了自适应的机制,允许网络根据不同的任务和数据集调整PageRank算法的参数。通过自适应机制,网络可以更好地适应不同的图结构和特征分布,提高模型的泛化能力。 实验证明,这个自适应通用广义PageRank图神经网络在节点分类、链路预测和社区检测等任务上都取得了比较好的效果。与传统的模型相比,该模型在保留图结构信息的同时,具有更高的计算效率和更好的预测能力。 总的来说,这篇论文提出了一种新颖的图神经网络模型,通过将PageRank算法与图神经网络相结合,可以有效地处理大规模图数据,并通过自适应机制适应不同的任务和数据集。这个模型在图神经网络领域具有一定的研究和应用价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值