浅谈简单线性回归(Simple linear regression)part8.从本源理解线性回归算法

本文探讨了简单线性回归和多元线性回归的概念,阐述了回归分析的本质——通过模型拟合数据以进行预测。在实际中,由于不存在能完美拟合所有数据的算法,因此采用最小二乘法来减小误差。文章借助矩阵和向量理论,解释了如何在3维空间中用线性模型尽可能贴近目标数据,并介绍了矩阵变换在最小二乘法中的应用。
摘要由CSDN通过智能技术生成

浅谈简单线性回归(Simple linear regression)part8.从本源理解线性回归算法
回归分析法是非常常见的算法
本质:通过模型抓住信息拟合数据从而达到预测的目的
抓一个信息→简单线性回归(一元)→y=kx+b
抓住多个信息→多元线性回归→y=b0+k1x1+k2x2+…+knxn

但是由此就产生了一个问题,在日常生活中,我们观测到的数据不存在可以使用的通用的能完美拟合所有数据的算法,故我们只能尽力缩小该算法拟合数据的误差,于是为了尽可能地接近我们想计算的数据区间,我们想到了最小二乘法.

现在我们把目光转向矩阵,目的在于拟合数据(x1,y1)…(xn,yn)
下面把数据分别放入y=kx+b中,结合矩阵的性质进行变换(理解起来需要点线代基础)
#变换之后的A就用到了最小二乘法.
在这里插入图片描述
对于上面A的理解,注意,矩阵是可以转换成向量的,那么就能用向量去理解,该式子的目的在于在空间(3维)上使用向量对目标向量A尽可能地拟合.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丰。。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值