推荐系统学习笔记-基于图的模型

由来

基于图的模型( graph-based model )是推荐系统中的重要内容。其实,很多研究人员把基于邻域的模型也称为基于图的模型,因为可以把基于邻域的模型看做基于图的模型的简单形式。
在研究基于图的模型之前,首先需要将用户行为数据表示成图的形式。本章讨论的用户行为数据是由一系列二元组组成的,其中每个二元组 (u, i) 表示用户 u 对物品 i 产生过行为。这种数据集很容易用一个二分图表示。
在这里插入图片描述

代码(参考)

在这里插入图片描述

原理

相关性高的特征:
1 两个顶点之间有很多路径相连;
2 连接两个顶点之间的路径长度都比较短;
3 连接两个顶点之间的路径不会经过出度比较大的顶;

将用户行为表示为二分图模型后,下面的任务就是在二分图上给用户进行个性化推荐。如果将个性化推荐算法放到二分图模型上,那么给用户 u 推荐物品的任务就可以转化为度量用户顶点v u 和与 v u 没有边直接相连的物品节点在图上的相关性,相关性越高的物品在推荐列表中的权重就越高。
度量图中两个顶点之间相关性的方法很多,但一般来说图中顶点的相关性主要取决于下面 3个因素:
 两个顶点之间的路径数;
 两个顶点之间路径的长度;
 两个顶点之间的路径经过的顶点。
而相关性高的一对顶点一般具有如下特征:
 两个顶点之间有很多路径相连;
 连接两个顶点之间的路径长度都比较短;
 连接两个顶点之间的路径不会经过出度比较大的顶点。
基于上面3个主要因素,研究人员设计了很多计算图中顶点之间相关性的方法。

公式表达

解释如下

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丰。。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值