KNN算法

研究背景

在KNN算法的发展初期,Cover和Hart在论文《Nearest Neighbor Pattern Classification》中提出了最早的KNN算法,并对其进行了详细的描述和分析。

在论文《k-Nearest Neighbor Classifiers》中,Fix和Hodges将KNN算法与欧几里得距离度量结合起来,将其应用于医学图像分类。

在文献《A Probabilistic Nearest Neighbor Method for Statistical Pattern Recognition》中,Aha等人将概率方法引入到KNN算法中,提出了一种基于概率的最近邻分类器,能够在处理噪声和缺失数据方面具有一定的优势。

在论文《Fast Exact Leave-One-Out Cross Validation of Sparse Least Squares Support Vector Machines》中,Huang等人将KNN算法与支持向量机相结合,提出了一种KNN-SVM方法,能够在处理大规模稀疏数据集方面具有较好的性能。

在论文《k-Nearest-Neighbor Based Method for Vibration Signal Classification》中,Zhang等人将KNN算法应用于振动信号分类,利用KNN算法的局部特性和自适应性,取得了较好的分类效果。

在文献《Adaptive Distance Metric Learning for k-NN Classification》中,Xu等人提出了一种自适应距离度量方法,能够根据数据的分布特征和分类任务的复杂度来动态地调整距离度量,从而提高KNN算法的性能。

原理说明

KNN(K-Nearest Neighbors)算法是一种基于实例的分类算法。其原理是在给定的数据集中,根据某个距离度量方法,将测试数据与已知数据集中的所有数据进行距离计算,然后选取K个距离最近的数据作为测试数据的邻居,根据邻居的类别进行投票,将测试数据分类到得票最多的类别中。

具体而言,KNN算法的步骤如下:

选择一个距离度量方法,常用的度量方法包括欧式距离、曼哈顿距离、余弦相似度等;
给定测试数据,计算测试数据与所有已知数据之间的距离;
选取距离测试数据最近的K个数据作为测试数据的邻居;
根据邻居的类别进行投票,将测试数据分类到得票最多的类别中。
KNN算法中K的取值通常由用户指定,也可以通过交叉验证等方法进行选择。KNN算法具有简单、易于理解的特点,但其分类精度可能受到数据集规模、距离度量方法等因素的影响。此外,在处理高维数据时,KNN算法的计算复杂度较高,可能需要采用降维等方法来提高效率。

公式推导

KNN(K-Nearest Neighbors)算法的公式推导主要涉及到距离度量和邻居选择的方法。

假设训练集中有m个样本,每个样本有n个特征,表示为 x i = ( x i 1 , x i 2 , . . . , x i n ) , i = 1 , 2 , . . . , m x_i=(x_{i1},x_{i2},...,x_{in}), i=1,2,...,m xi=(xi1,xi2,...,xin),i=1,2,...,m。每个样本都有一个类别标签 y i y_i yi,表示为 y i ∈ c 1 , c 2 , . . . , c K y_i \in {c_1,c_2,...,c_K} yic1,c2,...,cK,其中K是类别的个数。

给定一个测试样本 x x x,KNN算法需要找到K个距离测试样本最近的训练样本,计算它们的类别,并将测试样本归入到得票最多的类别中。

距离度量方法通常采用欧式距离或曼哈顿距离,假设采用欧式距离,那么测试样本 x x x 与第 i i i 个训练样本 x i x_i xi 之间的距离为:

d ( x , x i ) = ∑ j = 1 n ( x j − x i j ) 2 d(x,x_i) = \sqrt{\sum_{j=1}^{n}(x_j - x_{ij})^2} d(x,xi)=j=1n(xjxij)2

其中 x j x_j xj 是测试样本 x x x 的第 j j j 个特征值, x i j x_{ij} xij 是第 i i i 个训练样本的第 j j j 个特征值。

计算测试样本与每个训练样本之间的距离后,KNN算法需要选取K个距离最近的训练样本作为测试样本的邻居,常用的邻居选择方法有两种:

固定K值:直接选取距离最近的K个训练样本作为邻居;

可变K值:选取距离测试样本最近的K个训练样本,其中K是根据距离阈值 d 0 d_0 d0 动态计算得到的,即找到距离测试样本最近的样本,将它的距离记为 d 0 d_0 d0,然后将距离小于 d 0 d_0 d0 的所有样本都作为邻居。

在确定邻居之后,KNN算法需要根据邻居的类别进行投票,并将测试样本归入到得票最多的类别中。设邻居集合为 N ( x ) N(x) N(x),那么测试样本 x x x 的类别可以根据以下公式计算得到:

y = arg ⁡ max ⁡ c j ∑ x i ∈ N ( x ) [ y i = c j ] y = \arg\max_{c_j} \sum_{x_i \in N(x)} [y_i = c_j] y=argcjmaxxiN(x)[yi=cj]

其中 [ y i = c j ] [y_i = c_j] [yi=cj] 是指如果 y i = c j y_i=c_j yi=cj 则取值为1,否则为0,表示邻居中属于类别 c j c_j cj 的样本数量。

KNN算法的主要思想是找到与测试样本最相似的K个样本,将它们的类别作为测试样本的预测类别。KNN算法的核心就是如何选择距离度量方法和邻居选择方法,以及如何确定最佳的K值或距离阈值 d 0 d_0 d0

在实际应用中,KNN算法通常需要进行特征归一化处理,以保证各个特征对距离度量的影响是一致的。此外,KNN算法也需要考虑如何处理样本不平衡和噪声数据等问题,以提高分类的准确性和鲁棒性。

总之,KNN算法是一种简单而有效的分类方法,它不需要对数据进行训练,可以适用于多种数据类型和应用场景,并且可以通过调整K值或距离阈值等参数来控制算法的复杂度和性能。

伪代码

输入训练数据集 {(x1, y1), (x2, y2), ..., (xm, ym)},其中 xi 是第 i 个样本的特征向量,yi 是第 i 个样本的标签(分类或回归值)。
输入测试样本 x。
设置参数 K,即最近邻个数。
根据选定的距离度量方法(如欧几里得距离、曼哈顿距离等),计算测试样本 x 与训练样本集中每个样本的距离。
对距离排序,选取前 K 个距离最近的样本。
对于分类问题,选择出现次数最多的标签作为测试样本的预测标签;对于回归问题,选择 K 个最近邻样本的标签的平均值作为测试样本的预测值。
输出测试样本的预测标签或预测值。

代码示意

import numpy as np

class KNN:
    def __init__(self, k=3):
        self.k = k

    def fit(self, X, y):
        self.X_train = X
        self.y_train = y

    def predict(self, X):
        # 计算测试点与所有训练点之间的距离
        distances = np.sqrt(np.sum((self.X_train[:, np.newaxis] - X)**2, axis=2))
        # 确定距离最近的k个邻居
        nearest_neighbors = np.argsort(distances)[:, :self.k]
        # 确定每个测试点的预测标签
        y_pred = np.zeros(X.shape[0])
        for i in range(X.shape[0]):
            k_nearest_labels = self.y_train[nearest_neighbors[i]]
            y_pred[i] = np.argmax(np.bincount(k_nearest_labels))
        return y_pred

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丰。。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值