小白也能懂!Coze 入门教程:手把手教你手搓 Agent 智能体,搞定复杂任务不费力

1、 认识Coze

若你想快速搭建属于自己的 AI 对话机器人,却受限于编程技术或平台复杂度,那么 Coze 或许是理想选择。作为字节跳动推出的一站式 AI Bot 开发平台,它打破了技术门槛,无论是零基础的 AI 爱好者,还是有一定开发经验的从业者,都能借助平台工具高效构建 Bot—— 小到解答日常疑问的智能客服,大到处理多步骤业务逻辑的行业专属助手,覆盖场景十分广泛。更便捷的是,搭建完成后,你可直接将 Bot 发布至微信、QQ、Discord 等主流社交与通讯平台,让机器人快速触达目标用户,实现实时互动。

在这里插入图片描述

Coze 的双版本差异:国内版与国外版对比

为适配不同地区用户的网络环境与模型需求,Coze 分为国内版与国外版,两者在访问方式、支持模型等方面存在明确区别,具体如下:

对比维度国内版 Coze国外版 Coze
官方网址https://www.coze.cn/homehttps://www.coze.com/home
文档教程https://www.coze.cn/docs/guides/welcome(中文文档,适配国内用户阅读习惯)https://www.coze.com/docs/guides/welcome(多语言文档,含英文、日文等)
支持大模型以字节自研模型为核心,搭配国内主流模型,包括云雀大模型通义千问kimi 大模型聚焦海外主流模型,核心支持GPT-4GPT-3.5等 OpenAI 系列模型
访问条件无需特殊工具,国内普通网络即可直接访问,加载速度快,无跨境延迟问题需借助科学上网工具突破网络限制,访问稳定性受跨境网络环境影响
功能适配针对国内场景优化功能,如支持微信生态对接、中文语义理解强化、国内常用 API 集成(如高德地图、钉钉)侧重海外生态适配,支持 Discord、Slack 等平台无缝衔接,兼容海外主流第三方工具接口
版本选择建议:为何优先推荐国内版?

从模型性能来看,国外版因支持 GPT-4,在复杂逻辑推理、多模态处理等场景下表现更优,整体性能排序大致为:GPT-4>GPT-3.5≈kimi 大模型>云雀大模型。但结合国内用户的实际使用场景,国内版仍有不可替代的优势:

  1. 无访问门槛:无需配置科学上网,打开浏览器即可使用,避免了网络不稳定导致的开发中断问题;
  2. 本地化体验更佳:中文文档更易懂,客服支持响应更快,且功能适配国内主流平台(如微信公众号、企业微信),后续 Bot 落地更便捷;
  3. 功能迭代加速:目前国内版正持续追赶海外版本,已逐步上线插件开发、工作流自定义等核心功能,满足多数日常开发需求。

因此,为了让更多用户顺利上手,后续的实操教程将以国内版 Coze为基础,从平台注册到 Bot 上线,逐步拆解每一个关键步骤。

2、 认识Bot

Coze 是字节跳动推出的首款面向AI 代理 (Al Agent) 领域的产品。在Coze 这个平台里,AI 代理 被称为 Bot。这些 Bot 可以执行各种任务,包括但不 限于自动化服务、智能对话等,旨在通过先进的Al技术提升用户体验和效率。

相关界面介绍

在这里插入图片描述

3、功能与优势

3.1 插件:无限拓展的能力集

Coze 集成了丰富的插件工具,可以极大地拓展 Bot 的能力边界。

  • 内置插件: 目前平台已经集成了近百款各类型的插 件,包括资讯阅读、旅游出行、效率办公、图片理 解等 API 及多模态模型。你可以直接将这些插件添 加到 Bot 中,丰富 Bot 能力。例如使用新闻插件,打造一个可以播报最新时事新闻的 AI 新闻播 音员。

  • 自定义插件: Coze 平台也支持创建自定义插件。

你可以将已有的 API 能力通过参数配置的方式快速 创建一个插件让 Bot 调用。

3.2 知识库:丰富的数据源

Coze 提供了简单易用的知识库功能来管理和存储数 据,支持 Bot 与你自己的数据进行交互。无论是内容 量巨大的本地文件还是某个网站的实时信息,都可以 上传到知识库中。这样, Bot 就可以使用知识库中的 内容回答问题了。

  • 内容格式:知识库支持添加文本格式、表格格式、 照片格式的数据。

  • 内容上传: 知识库支持 TXT 等本地文件、在线网 页数据、 Notion 页面及数据库、API JSON 等多种 数据源,你也可以直接在知识库内添加自定义数 据。

3.3 长期记忆:持久化的记忆能力

Coze 提供了方便 AI 交互的数据库记忆能力。通过这 类功能,你可以让 Bot 持久化的记住用户对话的重要 参数或内容。

  • 数据库:将数据存储在结构化表中。 例如,创建 一个数据库来记录阅读笔记,包括书名、阅读进度 和个人注释。 有了数据库, Bot 就可以通过查询 数据库中的数据来提供更准确的答案。
  • 变量:记住对话中定义的变量。 例如,记住语言 变量的语言偏好并使用偏好的语言与用户聊天。
3.4 定时任务:快速创建的定时任务

Coze 支持为 Bot 创建定时任务。并且定时任务的制 定无需编写任何代码,你只需要直接输入任务描述, Bot 就会按时执行该任务。例如,你可以让 Bot:

  • 每天早上 9:00 给你推荐个性化的新闻。
  • 每天早上 7:00 提醒你查看今日天气预报和日程安 排。
3.5 工作流:灵活的工作流设计

Coze 的工作流功能可以用来处理逻辑复杂,且有较 高稳定性要求的任务流。 Coze 提供了大量灵活可组 合的节点包括大语言模型 LLM、自定义代码、判断逻 辑等,无论你是否有编程基础,都可以通过拖拉拽的 方式快速搭建一个工作流,例如:

  • 创建一个搜集电影评论的工作流,快速查看一部最 新电影的评论与评分。
  • 创建一个撰写行业研究报告的工作流,让 Bot 写 一份 20 页的报告。
3.6 多 Agent:多任务串行

Coze 支持多 Agent 模式。该模式下,你可以添加多 个 Agent 节点,每个 Agent 节点都是可以独立执行 具体任务的智体。并且你可以灵活配置各个节点之间 的连接关系,通过多节点之间的分工协作来处理复杂 的用户任务。

4、 Coze 的基本开发流程

4.1 注册登录账号

注册: https://www.coze.cn/sign

在这里插入图片描述

4.2创建智能体
  • 创建智能体
    在这里插入图片描述
  • 描述智能体

在这里插入图片描述

4.3 提示词和人设回复逻辑

智能体的人设与回复逻辑是一种自然语言指令,告诉 大语言模型(LLM)执行什么任务。搭建智能体的第 一步就是编写人设与回复逻辑,为智能体设定身份和 目标。智能体会根据大语言模型对人物设定和回复逻 辑的理解,来响应用户问题。因此人设与回复逻辑编 写得越清晰明确,智能体的回复也会越符合预期。

内容描述
角色智能体扮演的身份或职责,决定其回答的风格和 角度。
技能描述智能体能够执行的任务和使用的工具,明确 它在不同场景下的工作流程。
限制对智能体的回复内容进行约束,明确它不应回答 的范围。
格式通过提供回复示例,设定智能体按照特定的格式 进行回答,确保回复符合用户的预期标准
  • 案例

示例:

# 角色
你是一个专业的咨询小助手,能够精准透彻地理解用户的问 题,并从庞大的知识库中精准检索相关信息,进而为用户生 成详尽准确的答案。

## 技能
### 技能 1: 理解问题
1. 仔细剖析用户提出的问题,精准提取其中的关键信息, 如主题领域、具体需求、情境背景等。

### 技能 2: 知识库检索
1. 依据关键信息,在知识库中进行全面检索,查找相关的 资料和解决方案。

### 技能 3: 搜索引擎查询
1. 若根据关键信息,在知识库中未找到高度相关的知识, 则借助搜索引擎进行检索。

### 技能 4: 回答生成
1. 以检索到的信息为基础,为用户打造准确且简洁明了的 回答。

## 限制:
1. 只回答与成人学习、职业发展、生活资讯等相关的问 题,对无关话题不予理会。
2. 尽量运用清晰简洁的语言回应用户的问题。
3. 在整个回答过程中,始终将用户的需求置于核心位置。

在这里插入图片描述

4.4添加知识库

添加知识库指的是向这个平台或者系统中引入一组结 构化的信息集合,这些信息可以是关于特定领域的专 业知识、常见问题解答、指南、文档等。知识库的目 的在于为用户提供快速、准确的信息查询服务,同时 也能够帮助提高客服效率、增强用户体验。

特点

  • 提高回答准确性:通过整合最新的医学研究、临床 指南和权威资料,确保提供的信息科学、可靠。
  • 丰富服务内容:除了基本的健康管理和咨询服务
    外,还可以提供更广泛的健康教育材料,如预防疾 病的方法、营养指导等。
  • 优化用户体验:用户可以通过搜索或浏览的方式轻 松找到所需的信息,减少等待时间,提高满意度。
  • 支持个性化服务:根据用户的健康档案和偏好,推 送相关性更高的信息和服务建议。
4.4.1 添加知识库

在这里插入图片描述

4.4.2 选择知识库

在这里插入图片描述
在这里插入图片描述

4.4.3 上传知识库

在这里插入图片描述

4.4.4 分段与数据清洗

分段=>分段是指将大数据集划分为多个较小且具有 相似特征的数据子集的过程。这种划分可以基于不同 的标准,例如人口统计学特征、地理位置、行为模式 等。

数据清洗=>数据清洗是指识别并纠正或删除数据集 中错误、不完整、不准确或不相关的记录的过程。它 是确保数据质量的重要环节。

在这里插入图片描述

  • 处理完毕

在这里插入图片描述

4.4.5 使用知识库

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.4.6 预览与测试

在这里插入图片描述

5、 Coze的高级开发

5.1插件的使用
  • 自动生成插件,可以根据你的提示词自动添加对于的 工具
    在这里插入图片描述
  • 自动添加完毕
    在这里插入图片描述
  • 自动生成插件之后,可以进行对应的删除

在这里插入图片描述

  • 手动添加插件

在这里插入图片描述
在这里插入图片描述

  • 当我们询问知识库中不存在的内容的时候,会自动的调用插件

在这里插入图片描述

5.2 工作流的使用

工作流是一个由多个节点构成的标准化步骤,用来完 成特定的任务和达到预期的目标。通过将复杂的任务 拆解成多个子任务,可以避免单个模型能力的限制, 确保内容输出的品质。

5.2.1简单工作流的使用
  • 添加工作流
    在这里插入图片描述

  • 创建工作流
    在这里插入图片描述

  • 连接节点
    在这里插入图片描述

  • 点击试运行
    在这里插入图片描述

  • 运行结果
    在这里插入图片描述

5.2.2复杂工作流的使用

根据文字生成图片

  • 借助图片生成模型=>添加插件即可
    在这里插入图片描述

  • 工作流示意图
    在这里插入图片描述

  • 试运行
    加粗样式

  • 借助大模型中文提示词转换成英文提示词
    在这里插入图片描述

  • 点击发布添加工作流
    在这里插入图片描述

  • 发布成功
    在这里插入图片描述

  • 发布项目
    在这里插入图片描述

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线科技企业深耕十二载,见证过太多因技术卡位而跃迁的案例。那些率先拥抱 AI 的同事,早已在效率与薪资上形成代际优势,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑。我们整理出这套 AI 大模型突围资料包

  • ✅ 从零到一的 AI 学习路径图
  • ✅ 大模型调优实战手册(附医疗/金融等大厂真实案例)
  • ✅ 百度/阿里专家闭门录播课
  • ✅ 大模型当下最新行业报告
  • ✅ 真实大厂面试真题
  • ✅ 2025 最新岗位需求图谱

所有资料 ⚡️ ,朋友们如果有需要 《AI大模型入门+进阶学习资源包》下方扫码获取~
在这里插入图片描述

① 全套AI大模型应用开发视频教程

(包含提示工程、RAG、LangChain、Agent、模型微调与部署、DeepSeek等技术点)
在这里插入图片描述

② 大模型系统化学习路线

作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!
在这里插入图片描述

③ 大模型学习书籍&文档

学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
在这里插入图片描述

④ AI大模型最新行业报告

2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
在这里插入图片描述

⑤ 大模型项目实战&配套源码

学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。
在这里插入图片描述

⑥ 大模型大厂面试真题

面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余

图片

以上资料如何领取?

在这里插入图片描述

为什么大家都在学大模型?

最近科技巨头英特尔宣布裁员2万人,传统岗位不断缩减,但AI相关技术岗疯狂扩招,有3-5年经验,大厂薪资就能给到50K*20薪!

图片

不出1年,“有AI项目经验”将成为投递简历的门槛。

风口之下,与其像“温水煮青蛙”一样坐等被行业淘汰,不如先人一步,掌握AI大模型原理+应用技术+项目实操经验,“顺风”翻盘!
在这里插入图片描述
在这里插入图片描述

这些资料真的有用吗?

这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
在这里插入图片描述
在这里插入图片描述

以上全套大模型资料如何领取?

在这里插入图片描述

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值