随着AI技术加速落地,大模型相关的专业术语频繁出现在行业讨论中。无论是技术文档、产品方案还是投资分析,掌握这些“黑话”已成为从业者的必备技能。我将用最简明的语言,拆解 Token、RAG、RL、上下文长度、量化、蒸馏、智能体 7个高频概念,助你快速读懂大模型核心逻辑。
一、Token:大模型的“语言原子”
定义:Token是AI处理文本的最小单位,相当于自然语言中的“字词片段”。例如“人工智能”可能被拆分为“人工”+“智能”两个Token,或保留为单个Token(不同模型分词规则不同)。
DeepSeek官方也给出Token数和字数的大致换算比例如下:
-
1 个英文字符 ≈ 0.3 个 token。
-
1 个中文字符 ≈ 0.6 个 token。
核心价值:
-
计费基准:大模型服务通常按输入输出Token总量收费(如1元/百万Tokens)。
-
性能指标:上下文长度(如128K Tokens)决定模型单次处理文本的能力。例如128K Tokens≈6.5万汉字,可解析整本《三体》。
应用场景:
-
长文本摘要:一次性处理超长合同、论文。
-
成本估算:根据Token单价计算AI客服对话成本。
二、RAG:外接知识库的“外挂大脑”
定义:Retrieval-Augmented Generation(检索增强生成),通过实时检索外部知识库提升模型回答准确性。
运作原理:
-
用户提问 → 2. 从数据库/文档中检索相关片段 → 3. 将检索结果与问题拼接输入模型 → 4. 生成精准回答。
-
优势:
-
解决大模型“幻觉”(虚构事实)问题
-
动态更新知识,利用检索到的外部信息辅助生成更准确、时效性更强的文章
-
典型案例:
-
法律咨询:检索判例库生成法律意见书
-
医疗诊断:结合最新医学论文输出建议
三、RL:让AI“在试错中进化”
定义:Reinforcement Learning(强化学习),通过奖励机制让模型自主优化行为策略。训练过程:
- 模型输出答案 → 2. 人类标注/规则系统打分 → 3. 高分结果强化对应策略 →4. 迭代提升准确率。
- 与传统的训练方式相比特点如下:
应用突破:
-
DeepSeek-R1:通过RLHF(人类反馈强化学习)将事实错误率降低40%
-
游戏AI:AlphaGo通过RL战胜人类棋手
行业价值:
-
客服对话优化:奖励“解决用户问题”的行为
-
内容安全:惩罚生成违规内容的策略
四、上下文长度:大模型的“记忆力”
定义:模型单次处理文本的Token上限,直接影响长文本理解能力。分级标准:
-
4K(≈2000汉字):基础对话
-
32K(≈1.6万字):中篇小说分析
-
128K(≈6.5万字):学术论文改写技术突破:
-
DeepSeek V3:支持128K上下文,可解析500页PDF并提取核心结论选型建议:
-
短文本交互(如营销文案)选4K-8K模型
-
长文档处理(如法律合同)需32K以上
五、量化:给模型“瘦身”的压缩术
定义:降低参数精度(如FP32→INT8),以缩小模型体积、提升推理速度。效果对比:
精度 | 显存占用 | 推理速度 | 精度损失 |
---|---|---|---|
FP32 | 100% | 1x | 0% |
INT8 | 25% | 3x | ≤5% |
INT4 | 12.50% | 5x | ≤15% |
-
手机端部署:7B模型量化后可在iPhone14运行
-
边缘计算:工厂质检AI用INT8模型实时识别缺陷
量化程度越高,显存占用越少,但可能带来一定的精度损失
FP8 需要 H系列或者40系列 GPU 硬件支持、FP4需要B系列或者50系列支持建议根据实际需求在性能和精度间权衡
六、蒸馏:知识传承的“师徒制”
定义:大模型“蒸馏”技术是把大语言模型中的能力和知识迁移到更小的模型的技术,目的是在于构造出来资源高效和性能优异的小模型,未经过蒸馏的模型好比是老师,经过蒸馏的小模型可以比作学生
技术价值:
-
成本降低:7B蒸馏模型推理成本仅为千亿模型的1/20
-
性能保留:部分任务精度可达教师模型的90%典型案例:
-
R1-Distill-Qwen-7B:DeepSeek将671B大模型能力迁移到7B小模型,支持本地化部署1
-
医疗助手:三甲医院知识库蒸馏到轻量模型,供社区诊所使用
七、智能体:AI界的“钢铁侠战甲”
定义:具备自主规划、工具调用、环境交互能力的AI系统。核心组件:
-
大脑:大模型(决策中心)
-
手脚:API/机器人(执行指令)
-
记忆:数据库/知识图谱应用场景:
-
AutoGPT:自动拆解复杂任务(如“策划北京三日游”),调用地图、订票API执行
-
Manus:分析用户需求→生成设计稿→联动3D打印机生产样品
结语:读懂术语,把握AI浪潮
从Token的经济账到RAG的精准性,从量化的效率革命到智能体的自动化突破,这些术语背后折射出AI技术的演进逻辑。对于从业者而言,理解这些概念不仅是技术对话的入场券,更是设计产品、评估方案、洞察趋势的关键。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!