目录
1.1. 均方误差 (Mean Squared Error, MSE)
1.2. 均方根误差 (Root Mean Squared Error, RMSE)
1.3. 平均绝对误差 (Mean Absolute Error, MAE)
2.3. 召回率 (Recall) 或灵敏度 (Sensitivity)
2.5. ROC 曲线及 AUC (Area Under Curve)
评估模型性能指标是确保预测结果准确性和可靠性的重要手段。不同的模型和算法在相同的数据集上可能会产生截然不同的预测结果,因此需要通过一系列的性能指标来量化这些差异,从而选择最优的模型进行实际应用。
根据任务类型分为回归和分类两类,分别使用不同的指标。下面我详细介绍两类任务常用的性能指标及其公式。
一、回归模型性能评估指标
1.1. 均方误差 (Mean Squared Error, MSE)
定义: MSE 衡量预测值和实际值之间的平均平方差,能够惩罚较大的误差。
公式:
MSE 值越小,模型性能越好,表示预测值与实际值之间的差距越小。
1.2. 均方根误差 (Root Mean Squared Error, RMSE)
定义: RMSE 是 MSE 的平方根,保持与原单位相同,更易解释。
公式:
RMSE 值越小,模型性能越好,表示预测值与实际值之间的差距越小。
1.3. 平均绝对误差 (Mean Absolute Error, MAE)
定义: MAE 衡量预测值和实际值之间的绝对差的平均值,不像 MSE 那样对大误差敏感。
公式:MAE 越小,模型性能越好,表示预测值与实际值之间的差距越小。
1.4. R² (R-Squared, 决定系数)
定义: R² 衡量模型对数据的解释能力,反映了预测值与实际值的拟合程度,取值范围为 [0,1] 或更低。
公式: 其中,yˉ是实际值的平均值。