Maximum Sequence

Maximum Sequence

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 0    Accepted Submission(s): 0


Problem Description
Steph is extremely obsessed with “sequence problems” that are usually seen on magazines: Given the sequence 11, 23, 30, 35, what is the next number? Steph always finds them too easy for such a genius like himself until one day Klay comes up with a problem and ask him about it.

Given two integer sequences {ai} and {bi} with the same length n, you are to find the next n numbers of {ai}:  an+1a2n . Just like always, there are some restrictions on  an+1a2n : for each number  ai , you must choose a number  bk  from {bi}, and it must satisfy  ai ≤max{ aj -j│ bk ≤j<i}, and any  bk  can’t be chosen more than once. Apparently, there are a great many possibilities, so you are required to find max{ 2nn+1ai } modulo  109 +7 .

Now Steph finds it too hard to solve the problem, please help him.
 

Input
The input contains no more than 20 test cases.
For each test case, the first line consists of one integer n. The next line consists of n integers representing {ai}. And the third line consists of n integers representing {bi}.
1≤n≤250000, n≤a_i≤1500000, 1≤b_i≤n.
 

Output
For each test case, print the answer on one line: max{ 2nn+1ai } modulo  109 +7。
 

Sample Input
  
  
4 8 11 8 5 3 1 4 2
 

Sample Output
  
  
27


Hint
For the first sample:1. Choose 2 from {bi}, then a_2…a_4 are available for a_5, and you can let a_5=a_2-2=9;

2. Choose 1 from {bi}, then a_1…a_5 are available for a_6, and you can let a_6=a_2-2=9;


题意:

     给定a,b两个数组,其大小相同为n。现在需要找出另一个数组a[n+1]~a[2n],规定这个数组里的元素满足从b数组种选取一个数b(k),使得a(i)<=max{a(j)-j} (b(k)<=j<i),求如何确定这个数组可以达到元素和最大。

思路:

      由于赋值时比较的是a[i]-i的大小,所以肯定是大的值赋在前面,使得a[i]-i尽可能大,这样才能保证选出的元素尽可能大,所得出的和自然也最大。这样我们就先把b数组排序,在a[i]中存入从a[i]到a[n]中a[k]-k的最大值,然后把b从小到大遍历,找到第a[b[i]]个位置再选最大的赋值。下面给组样例。

     4

     11 9 12 5

     1 3 4 3

     a数组做a[k]-k处理为 10 7 9 1

     再做选最大值处理为 10 9 9 1

     b数组排序为1 3 3 4

     则a[5]=10,a[5]-5=5;

        a[6]=9,a[6]-6=3;

        a[7]=9,a[7]-7=2;

        a[8]=5,a[8]-8=-4。

        sum=a[5]+a[6]+a[7]+a[8]=10+9+9+5=23

下面贴上代码:

#include<cstdio>
#include<algorithm>
#define LL long long

using namespace std;

const int MAX=250010;
int a[MAX],b[MAX];
const LL mod=1e9+7;

int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        int x;
        for(int i=1; i<=n; ++i)
        {
            scanf("%d",&x);
            a[i]=x-i;    //把a[i]-i存入数组
        }

        for(int i=n-1; i>0; --i)
            a[i]=max(a[i+1],a[i]); //a[i]代表a[i]~a[n]的最大值

        for(int i=1; i<=n; ++i)
            scanf("%d",&b[i]);
        sort(b+1,b+n+1); //b[0]=0,从b[1]开始排序

        LL sum=0;
        int most=-1,figure;
        for(int i=1; i<=n; ++i)
        {
            figure=max(most,a[b[i]]);
            //a[b[i]]代表从a[b[i]]到a[n],a[k]-k的最大值
            //figure(a[n+i+1]的值)取从a[b[i]]到a[n+i],a[k]-k的最大值
            sum=(sum+figure)%mod;
            most=max(figure-n-i,most);
            //figure-n-i代表a[n+i]-(n+i)
            //most记录a[n+1]~a[n+i]中的a[k]-k的最大值
        }
        printf("%lld\n",sum);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值