FM & FFM算法解读与实践

FM & FFM算法解读与实践

在推荐系统和计算广告业务中,点击率CTR(click-through rate)和转化率CVR(conversion rate)是衡量流量转化的两个关键指标。准确的估计CTR、CVR对于提高流量的价值,增加广告及电商收入有重要的指导作用。业界常用的方法有人工特征工程 + LR(Logistic Regression)、GBDT(Gradient Boosting Decision Tree) + LR、FM模型。在这些模型中,FM近年来表现突出。
因子分解机(Factorization Machine, FM)是由Steffen Rendle提出的一种基于矩阵分解的机器学习算法,其主要用于解决数据稀疏的业务场景(如推荐业务),特征怎样组合的问题。
paper指出FM与SVM相比,有如下优势:

  • FM可以实现非常稀疏数据参数估计,而SVM会效果很差,因为训出的SVM模型会面临较高的bias;
  • FM拥有线性的复杂度, 可以通过 primal 来优化而不依赖于像SVM的支持向量机;

一、FM原理

1. 为什么进行特征组合?

在feed流推荐场景中,根据user和item基础信息(clicked:是否点击;userId:用户ID;userGender:用户性别;itemTag:物品类别),来预测用户是否对物品感兴趣(点击与否,二分类问题)。源数据如下:

clickeduserIduserGenderitemTag
11篮球
01化妆品
02篮球
12化妆品

由于userGender和itemTag特征都是categorical类型的,需要经过独热编码(One-Hot Encoding)转换成数值型特征。

clickeduserIduserGender_男userGender_女itemTag_篮球itemTag_化妆品
111010
011001
020110
120101

经过One-Hot编码之后,大部分样本数据特征是比较稀疏的。上面的样例中,每个样本有5维特征,但平均仅有3维特征具有非零值。实际上,这种情况并不是此例独有的,在真实应用场景中这种情况普遍存在。例如,CTR/CVR预测时,用户的性别、职业、教育水平、品类偏好,商品的品类等,经过One-Hot编码转换后都会导致样本数据的稀疏性。特别是商品品类这种类型的特征,如商品的三级品类约有1000个,采用One-Hot编码生成1000个数值特征,但每个样本的这1000个特征,有且仅有一个是有效的(非零)。由此可见,数据稀疏性是实际问题中不可避免的挑战。
One-Hot编码的另一个特点就是导致特征空间大。例如,商品三级类目有1000维特征,一个categorical特征转换为1000维数值特征,特征空间剧增。
同时通过观察大量的样本数据可以发现,某些特征经过关联之后,与label之间的相关性就会提高。例如,“男性”与“篮球”、“女性”与“化妆品”这样的关联特征,对用户的点击有着正向的影响。换句话说:男性用户很可能会在篮球有大量的浏览行为;而在化妆品却不会有。这种关联特征与label的正向相关性在实际问题中是普遍存在的。因此,引入两个特征的组合是非常有意义的。

2. 如何组合特征?

多项式模型是包含特征组合的最直观的模型。在多项式模型中,特征的组合采用表示,即都非零时,组合特征才有意义。从对比的角度,本文只讨论二阶多项式模型。模型的表达式如下:

其中, 代表样本的特征数量,是第个特征的值, 是模型参数。
从公式来看,模型前半部分就是普通的LR线性组合,后半部分的交叉项即特征的组合。单从模型表达能力上来看,FM的表达能力是强于LR的,至少不会比LR弱,当交叉项参数全为0时退化为普通的LR模型。
从上面公式可以看出,组合特征的参数一共有个,任意两个参数都是独立的。然而,在数据稀疏性普遍存在的实际应用场景中,二次项参数的训练是很困难的。其原因是:每个参数的训练需要大量都非零的样本;由于样本数据本来就比较稀疏,满足都非零的样本将会非常少。训练样本的不足,很容易导致参数不准确,最终将严重影响模型的性能。

3. 如何解决二次项参数的训练问题呢?

矩阵分解提供了一种解决思路。在model-based的协同过滤中,一个rating矩阵可以分解为user矩阵和item矩阵,每个user和item都可以采用一个隐向量表示。比如在下图中的例子中,我们把每个user表示成一个二维向量,同时把每个item表示成一个二维向量,两个向量的点积就是矩阵中user对item的打分。

任意的实对称矩阵都有个线性无关的特征向量。并且这些特征向量都可以正交单位化而得到一组正交且模为1的向量。故实对称矩阵可被分解成:

其中正交矩阵为实对角矩阵
类似地,所有二次项参数可以组成一个对称阵 (为了方便说明FM的由来,对角元素可以设置为正实数),那么这个矩阵就可以分解为 的第列( )便是第维特征()的隐向量。换句话说,特征分量 和![](https://img-blog.csdnimg.cn/img_convert/bebaf8f6b5e927749a2a6d453d102032.gif#align=left&display=inline&height=14&margin=[object Object]&originHeight=14&originWidth=16&size=0&status=done&style=none&width=16)的交叉项系数就等于对应的隐向量与对应的隐向量的内积,即每个参数这就是FM模型的核心思想
为了求出,我们需要求出特征分量的辅助向量 , 的辅助向量 , 表示隐向量长度(实际应用中),转换过程如下图所示:

矩阵对角线上面的元素即为交叉项的参数。
FM的模型方程为(本文不讨论FM的高阶形式):


其中, 是第维特征的隐向量, 代表向量点积。隐向量的长度为 ,包含 个描述特征的因子。根据公式,二次项的参数数量减少为 个,远少于多项式模型的参数数量。所有包含的非零组合特征(存在某个,使得 )的样本都可以用来学习隐向量,这很大程度上避免了数据稀疏性造成的影响。
显而易见,上述是一个通用的拟合方程,可以采用不同的损失函数用于解决回归、二元分类等问题,比如可以采用MSE(Mean Square Error)损失函数来求解回归问题,也可以采用Hinge/Cross-Entropy 损失来求解分类问题。当然,在进行二元分类时,FM的输出需要经过sigmoid变换,这与Logistic回归是一样的。直观上看,FM的复杂度是 。但是,通过公式(3)的等式,FM的二次项可以化简,其复杂度可以优化到。由此可见,FM可以在线性时间对新样本作出预测。
采用随机梯度下降法SGD求解参数

由上式可知,的训练只需要样本的特征非0即可,适合于稀疏数据。
在使用SGD训练模型时,在每次迭代中,只需计算一次所有 ,就能够方便得到所有的梯度,上述偏导结果求和公式中没有,即与无关,只与有关,显然计算所有的复杂度是 ,模型参数一共有 个。因此,FM参数训练的复杂度也是。综上可知,FM可以在线性时间训练和预测,是一种非常高效的模型。

二、FFM原理

1. 特征组合为什么引入field?

同样以feed流推荐场景为例,我们多引入user维度用户年龄信息,其中性别和年龄同属于user维度特征,而tag属于item维度特征。在FM原理讲解中,“男性”与“篮球”、“男性”与“年龄”所起潜在作用是默认一样的,但实际上不一定。FM算法无法捕捉这个差异,因为它不区分更广泛类别field的概念,而会使用相同参数的点积来计算。
在FFM(Field-aware Factorization Machines )中每一维特征(feature)都归属于一个特定和field,field和feature是一对多的关系。如下表所示:

fielduser field(U)item field(I)
clickeduserIduserGender_男userGender_女userAge_[20.30]userAge_[30,40]itemTag_篮球itemTag_化妆品
11101010
01101001
02010110
12010101

FFM模型认为不仅跟有关系,还跟与相乘的所属的Field有关系,即成了一个二维向量是隐向量长度,是Field的总个数。设样本一共有个特征, 个field,那么FFM的二次项有个隐向量。而在FM模型中,每一维特征的隐向量只有一个。FM可以看作FFM的特例,是把所有特征都归属到一个field时的FFM模型。

其中,是第的特征所属的字段。如果隐向量的长度为,那么FFM的二次参数有![](https://img-blog.csdnimg.cn/img_convert/916b1408abf1f34a915dbfd9cae90a89.gif#align=left&display=inline&height=17&margin=[object Object]&originHeight=17&originWidth=32&size=0&status=done&style=none&width=32)个,远多于FM模型的个。此外,由于隐向量与field相关,FFM二次项并不能够化简,时间复杂度是
需要注意的是由于FFM中的latent vector只需要学习特定的field,所以通常:

2. 如何组合特征?

还是以feed流场景为例,说明FFM是如何组合特征的。输入记录如下:

clickeduserIduserGender(U)userAge(U)itemTag(I)
11[20,30]篮球

FM模型交叉项为:

而FFM模型特征交叉项为:

FFM在做latent vector的inner product的时候,必须考虑到其他特征所属的字段。例如
中男性和年龄[20,30]均为user field,所以不区分field;
中男性、年龄[20,30]属于user field,而篮球属于item field,所以要考虑特征的latent vector。

三、xlearn实现

实现FM & FFM的最流行的python库有:LibFM、LibFFM、xlearn和tffm。其中,xLearn是一款_高性能易于使用可扩展的_机器学习软件包,包括FM和FFM模型,可用于大规模解决机器学习问题。xlearn比libfm和libffm库快得多,并为模型测试和调优提供了更好的功能。这里以xlearn实现FM和FFM算法。

1. FM实现

数据来自Kaggle预测泰坦尼克号的生存数据集,xlearn可以直接处理csv以及libsvm格式数据来实现FM算法,但对于FFM必须是libsvm格式数据。

1.1 python代码

import xlearn as xl

# 训练
fm_model = xl.create_fm()  # 使用xlearn自带的FM模型
fm_model.setTrain("./fm_train.txt")  # 训练数据

# 参数:
#  0. 二分类任务
#  1. learning rate: 0.2
#  2. lambda: 0.002
#  3. metric: accuracy
param = {'task':'binary', 'lr':0.2,
'lambda':0.002, 'metric':'acc'}

# 使用交叉验证
fm_model.cv(param)

2. FFM实现

数据来自Criteo点击率预测挑战赛中CTR数据集的一个微小(1%)抽样,首先我们需要将其转换为xLearn所需的libffm格式以拟合模型。

2.1 python代码

import xlearn as xl

# 训练
ffm_model = xl.create_ffm() # 使用FFM模型
ffm_model.setTrain("./FFM_train.txt")  # 训练数据
ffm_model.setValidate("./FFM_test.txt")  # 校验测试数据

# param:
#  0. binary classification
#  1. learning rate: 0.2
#  2. regular lambda: 0.002
#  3. evaluation metric: accuracy
param = {'task':'binary', 'lr':0.2,
'lambda':0.002, 'metric':'acc'}

# 开始训练
ffm_model.fit(param, './model.out')

# 预测
ffm_model.setTest("./FFM_test.txt")  # 测试数据
ffm_model.setSigmoid()  # 归一化[0,1]之间

# 开始预测
ffm_model.predict("./model.out", "./output.txt")

论文下载:

FFM.pdf
FM.pdf

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值