自动驾驶学习笔记(八)——路线规划

#Apollo开发者#

学习课程的传送门如下,当您也准备学习自动驾驶时,可以和我一同前往:

《自动驾驶新人之旅》免费课程—> 传送门

《Apollo Beta宣讲和线下沙龙》免费报名—>传送门

文章目录

前言

路线规划

路由元素

路径搜索

最优计算

实例

Tips

总结


前言

        见《自动驾驶学习笔记(一)——Apollo平台

        见《自动驾驶学习笔记(二)——Apollo入门

        见《自动驾驶学习笔记(三)——场景设计

        见《自动驾驶学习笔记(四)——变道绕行仿真

        见《自动驾驶学习笔记(五)——绕行距离调试

        见《自动驾驶学习笔记(六)——Apollo安装

        见《自动驾驶学习笔记(七)——感知融合

路线规划

        路线规划的目标是利用地图数据和实时交通信息,找到从A到B的最佳路线。

路由元素

        为了便于开发查找路径的算法,首先需要将地图转化为由节点和边缘组成的数据结构,节点代表路段,边缘代表路段之间的连接,如下图所示:

路径搜索

       如下图所示,搜索从A到B的路径

        第一步,查找A相邻的节点,有8个候选节点1~8

        第二步,查找1~8相邻的节点,有13个候选节点a~m。

        这时就出现了21条候选路径:

        A->1->d

        A->1->e

        A->1->f

        A->2->b

        A->2->c

        A->2->d

        A->3->a

        A->3->b

        A->3->c

        A->5->k

        A->5->l

        A->5->m

        A->6->j

        A->6->k

        A->6->i

        A->7->h

        A->7->i

        A->7->j

        A->8->f

        A->8->g

        A->8->h

        第三步,在上述21条候选路径的相邻节点上继续搜索新的候选节点,进而产生新的候选路径。

        重复上述搜索过程,直至节点B在候选路径中出现为止。

最优计算

        上述路径搜索算法,如果A至B的距离变远,或者地图的粒度变细,那么需要消耗的算力将是指数级增加的,所以就需要引入最优排序,在每一个步骤都剔除掉一些相对较差的候选路径。这里先从路径长度这一个角度来评价候选路径,每个步骤中的候选路径长度f,都有已有距离长度g和剩余距离长度h两部分组成,如下图所示:

第一步的路径长度值

第二步的路径长度值

实例

        如下图所示,车辆在一个高速公路的出口,搜索到左转、直行和右转三个候选路径,分别对应不同的g值和h值,两者相加计算得到最优的路径为右转路线。

Tips

        在路线规划的实际应用中,不管是路径搜索,还是最优计算,除了要考虑上述的地图数据和距离长度之外,通常还要考虑有没有市政封路、交通事故、堵车缓行、路面质量、红绿灯多少、加油充电站、停车场出入口、路桥费多少等等因素,是一个比较复杂的工程问题。

总结

       以上就是本人在学习自动驾驶时,对所学课程的一些梳理和总结。后续还会分享另更多自动驾驶相关知识,欢迎评论区留言、点赞、收藏和关注,这些鼓励和支持都将成文本人持续分享的动力。

        另外,如果有同在小伙伴,也正在学习或打算学习自动驾驶时,可以和我一同抱团学习,交流技术。


        版权声明,原创文章,转载和引用请注明出处和链接,侵权必究!

        文中部分图片来源自网络,若有侵权,联系立删。

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Cssust

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值