自动驾驶学习笔记(六)——Apollo安装

#Apollo开发者#

学习课程的传送门如下,当您也准备学习自动驾驶时,可以和我一同前往:

《自动驾驶新人之旅》免费课程—> 传送门

《2023星火培训【感知专项营】》免费课程—>传送门

文章目录

前言

Apollo安装

硬件配置

安装Ubuntu

安装 Docker

安装aem

进入Apollo环境容器

验证DreamView

Tips

总结


前言

        见《自动驾驶学习笔记(一)——Apollo平台

        见《自动驾驶学习笔记(二)——Apollo入门

        见《自动驾驶学习笔记(三)——场景设计

        见《自动驾驶学习笔记(四)——变道绕行仿真

        见《自动驾驶学习笔记(五)——绕行距离调试

Apollo安装

        前期练习Apollo都是在百度的云实验平台进行的,本文是把Apollo安装到本地电脑,方便后期深度使用。官方已经打包好镜像文件,下载地址包含在自动脚本中,无需自行下载。

        Apollo安装的官方说明文档如下:

硬件配置

        CPU:4核及以上

        内存:16G及以上

        GPU(非必须,仅部分模块需要):Nvidia GX1060或更高

        注:需要电脑保持联网,过程中脚本会自动下载安装包和其他依赖文件

安装Ubuntu

        Linux系统要求Ubuntu 18.04+,如下三种安装方式都可以:

        ①系统原生安装 ubuntu

        ②双系统安装 ubuntu

        ③使用 vmware workstation player虚拟机安装 ubuntu

        注:虽然其他发布版本的 Linux也可能没问题,但我们只在纯净的Ubuntu系统,即 Ubuntu 18.04.5LTS( Bionic Beaver)中测试过 Apollo。因此,推荐您使用UbuntU 18.04.5作为主机的操作系统。

安装 Docker

        如下两种安装方式都可以:

        ①根据官方指引安装 docker

        ②使用Apoo提供的脚本安装:

wget http://apollo-pkg-beta.bj.bcebos.com/docker_install.sh

bash docker_install.sh

        安装成功后如下图所示:

安装aem

        aem 是一个命令行工具,提供管理 Apollo 容器的能力。使用 aem,不需要运行Apollo 脚本来启动和进入容器,避免了 Apollo 脚本污染工作空间代码的问题。

sudo bash -c "echo 'deb https://apollo-pkg-beta.cdn.bcebos.com/neo/beta bionic main' >> /etc/apt/sources.list"

wget -o - https://apollo-pkg-beta.cdn.bcebos.com/neo/beta/key/deb.gpg.key | sudo apt-key add -

sudo apt update

sudo apt install apollo-neo-env-manager-dev

aem -h

        安装成功后如下图所示:

进入Apollo环境容器

        这个过程中aem会利用自身功能,自动从网络下载Apollo软件包的镜像进行安装

mkdir application-demo

cd application-demo

aem start

aem enter

        成功进入Apollo容器后如下图所示:

验证DreamView

sudo apt install apollo-neo-dreamview-dev apollo-neo-monitor-dev

aem bootstrap start

        DreamView安装和启动成功后如下图所示:

        在浏览器中查看DreamView如下图所示:

Tips

        aem指令说明:

        1、aem -h:查看aem指令帮助;

        2、aem start:启动一个CPU容器,先检查有无,有则重启,无则启动;

        3、aem start_f:强制重启CPU容器,先删除再启动;

        4、aem start_gpu:启动一个GPU容器;

        5、aem enter:进入Apollo开发环境容器,前提需要先启动;

        Docker的状态机如下图所示:

总结

        以上就是本人在学习自动驾驶时,对所学课程的一些梳理和总结。后续还会分享另更多自动驾驶相关知识,欢迎评论区留言、点赞、收藏和关注,这些鼓励和支持都将成文本人持续分享的动力。

        另外,如果有同在小伙伴,也正在学习或打算学习自动驾驶时,可以和我一同抱团学习,交流技术。


        版权声明,原创文章,转载和引用请注明出处和链接,侵权必究!

        文中部分图片来源自网络,若有侵权,联系立删。

自动驾驶的感知原理实践涉及多个方面。其中,外参标定是一项重要的任务,它包括离线标定和在线标定两种方法。离线标定是在实验室或特定环境下进行的,通过收集传感器数据并进行后期处理,以获得传感器之间的准确相对位置和姿态信息。在线标定则是在实际行驶中进行的,通过实时采集传感器数据并进行标定,以适应不同的道路和环境条件。\[1\] 在感知方面,自动驾驶系统通常使用多种传感器,如摄像头、激光雷达和雷达等。这些传感器可以提供丰富的环境信息,帮助车辆感知周围的道路、障碍物和交通标志等。对于激光雷达数据,常用的方法是使用ICP(Iterative Closest Point)算法进行点云匹配,以求解传感器之间的位姿关系。\[1\] 此外,深度学习也在自动驾驶的感知中发挥着重要作用。通过训练深度神经网络,可以实现对图像和点云数据的高级特征提取和目标检测。深度学习几何建模的融合可以提高感知的准确性和鲁棒性,帮助自动驾驶车辆检测和识别意外障碍物。\[2\] 关于自动驾驶感知的研究,德国大学的一篇论文提供了一些关于检测方法的指导。该论文探讨了自动驾驶中视觉感知的边界情况,并提出了一些检测方法的建议。这些研究对于改进自动驾驶系统的感知能力具有重要意义。\[3\] 总之,自动驾驶的感知原理实践涉及外参标定、传感器数据处理、深度学习和几何建模等多个方面。通过综合利用不同的技术和方法,可以提高自动驾驶车辆对周围环境的感知能力,从而实现安全、高效的自动驾驶体验。 #### 引用[.reference_title] - *1* [Apollo星火计划学习笔记——第五讲Part1 Apollo感知模块详解实践](https://blog.csdn.net/m0_51902001/article/details/127179455)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [如何在自动驾驶的视觉感知中检测极端情况?](https://blog.csdn.net/Yong_Qi2015/article/details/123124159)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Cssust

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值