自动驾驶学习笔记(七)——感知融合

本文围绕自动驾驶技术,介绍了Apollo平台中的感知融合方法,重点讲解了卡尔曼滤波在融合中的应用。通过实例展示了Lidar和Radar数据融合的过程,并分享了学习自动驾驶的资源和交流机会。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#Apollo开发者#

学习课程的传送门如下,当您也准备学习自动驾驶时,可以和我一同前往:

《自动驾驶新人之旅》免费课程—> 传送门

《Apollo Beta宣讲和线下沙龙》免费报名—>传送门

文章目录

前言

感知融合

卡尔曼滤波

融合策略

实例

Tips

总结


前言

        见《自动驾驶学习笔记(一)——Apollo平台

        见《自动驾驶学习笔记(二)——Apollo入门

        见《自动驾驶学习笔记(三)——场景设计

        见《自动驾驶学习笔记(四)——变道绕行仿真

        见《自动驾驶学习笔记(五)——绕行距离调试

        见《自动驾驶学习笔记(六)——Apollo安装

感知融合

        感知融合利用各个传感器相辅相成,可以提高感知性能,减少跟踪误差,对预测结果更加确信。

卡尔曼滤波

        感知融合的一个基本算法是卡尔曼滤波,即模型预测和测量更新的无限循环,如下图所示:

融合策略

        1、同步融合:同时更新来自不同传感器的测量结果。

        2、异步融合:逐个更新传感器的测量结果。

实例

        Lidar和Radar两种传感器检测到的目标位置数据,如下图所示:

Tips

        Apollo的车道和目标感知框架:

总结

        以上就是本人在学习自动驾驶时,对所学课程的一些梳理和总结。后续还会分享另更多自动驾驶相关知识,欢迎评论区留言、点赞、收藏和关注,这些鼓励和支持都将成文本人持续分享的动力。

        另外,如果有同在小伙伴,也正在学习或打算学习自动驾驶时,可以和我一同抱团学习,交流技术。


        版权声明,原创文章,转载和引用请注明出处和链接,侵权必究!

        文中部分图片来源自网络,若有侵权,联系立删。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Cssust

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值