【案例分享】江苏某汽车制造厂水冷式制冷站AI节能优化方案

主要诉求:

对B系统进行AI节能优化:3台离心机+1台螺杆机+板式换热器

优化前后对比:

优化前:根据人工经验判断冷机和板换的启停,PLC固定逻辑调节参数

优化后:根据冷负荷对工况进行分类,自动输出冷机开启台数,冷冻水、冷却水温度和流量等策略参数,降低制冷站能耗

00

优化效果

节能降耗

⚫ 不同的工况, 满足末端需求的前提下,输出最佳的控制策略,降低制冷系统整体能耗约10%

用电成本降低

⚫ 优化设备启停,控制最大需量,降低基本电费

⚫ 优化设备运行策略,削峰填谷,降低电度电费

人工成本降低

⚫ 数据量化支撑,提升运维效率

⚫ 形成策略知识库,降低新人上手门槛

延长设备寿命

⚫ 加入设备启停时间间隔、设备轮换规则等

⚫ 提供设备的维护建议、更换预警等,延长设备寿命

打造低碳示范区

⚫ 实现低碳排放、践行国家双碳战略,打造绿色低碳示范区、助力灯塔工厂、绿色建筑和园区等申报

01

AI预测

⚫ 根据厂区气象测量数据、区域历史和预报气象数据,AI修正得到厂区气象预测值,优化冷负荷需求预测精度。

⚫ 同时考虑末端及冷冻水管损失冷负荷,精准预测总冷负荷需求及冷站供给需求。

02

AI优化-智能启停

⚫ 预测冷机开机到末端开机冷量需求,作为冷站供给需求,基于遗传算法输出冷站提前开机策略。

⚫ 预测冷机停机到末端停机冷量需求,分析管道剩余冷负荷,输出冷站提前停机策略。

⚫ 挖掘分析提前开机和关机时间,充分利用管道中的冷负荷,实现冷负荷零浪费。

03

AI优化-智能优化

⚫ 统计分析冷机、冷冻水温度、冷却水温度最佳工作区及实时工作参数,指导用户优化冷站运行。

⚫ 实时预测总冷负荷需求,作为冷站供给需求,基于遗传算法输出冷站优化策略。

⚫ 对比优化前和优化后COP趋势,展示当日及本月节能优化效果。

解决方案:CET中电技术水冷式制冷站AI节能优化方案

01

系统组网

02

系统架构图

03

总体思路

04

节能控制办法

05

数据采集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值