实现电路阻抗匹配的两个方法

具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。

阻抗匹配原则:高频、射频、高速电路必做,低频电路可不做。

  • 阻抗常用Z表示:阻抗由电阻、感抗和容抗三者组成。阻抗单位为欧姆,常用Z表示,是一个复数Z= R+i( ωL–1/(ωC))。

具体说来阻抗可分为两个部分,电阻(实部)和电抗(虚部)。其中电抗又包括容抗和感抗,由电容引起的电流阻碍称为容抗,由电感引起的电流阻碍称为感抗。

阻抗匹配的重要性

信号或广泛电能在传输过程中,为实现信号的无反射传输或最大功率传输,要求电路连接实现阻抗匹配。阻抗匹配关系着系统的整体性能,实现匹配可使系统性能达到最优。
阻抗匹配的概念应用范围广泛,阻抗匹配常见于各级放大电路之间,放大电路与负载之间,信号与传输电路之间,微波电路与系统的设计中。无论是有源还是无源,都必须考虑匹配问题,根本原因是电压电流信号在低频电路中是电压与电流,但是在高频中却表现为导行电磁波;如果阻抗不匹配就会发生严重的反射,损坏仪器和设备。
当信号传输中如果传输线上发生特性阻抗突变也会发生反射。波长与频率成反比,低频信号的波长远远大于传输线的长度,因此一般不用考虑反射问题,也就是说低频电路做不做阻抗匹配也不会出现什么大问题
在高频领域,当信号的波长与传输线长出于相同量级时反射的信号易与原信号混叠,影响信号质量。通过阻抗匹配可有效减少、消除高频信号反射。所以高频电路一定要做阻抗匹配

阻抗匹配的方法

阻抗匹配的方法主要有两个,一是改变组抗力,二是调整传输线。
改变阻抗力就是通过电容、电感与负载的串并联调整负载阻抗值,以达到源和负载阻抗匹配。

改变阻抗力的方法:
  1、使用变压器来做阻抗转换。
  2、使用串联/并联电容或电感的办法,这在调试射频电路时常使用。
  3、使用串联/并联电阻的办法。
一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器、CAN总线接受器,常在数据线终端并联120欧的匹配电阻。(始端串联匹配,终端并联匹配)。

调整传输线的方法
调整传输线的方法在设计PCB时经常使用,首先需要了解PCB厂商提供PCB板材质、PCB叠层、PCB板厚等。然后针对PCB板的工艺对PCB进行设计(布线长度、宽度以及布线间距)。最后根据相关设计资料及要求提供给PCB的生产厂家进行PCB生产。(一般可以借助SI9000软件或者PCB厂商提供的软件去计算PCB走线的阻抗)
在这里插入图片描述

PCB走线阻抗主要来自寄生的电容、电阻、电感系数,主要因素有材料介电常数、线宽、线厚乃至焊盘的厚度等。
调整传输线是加长源和负载间的距离,配合电容和电感把阻抗力调整为零。此时信号不会发生反射,能量都能被负载吸收。PCB 阻抗的范围是 25 至120 欧姆,高速PCB布线中,一般把数字信号的走线阻抗设计为50欧姆。
一般规定
同轴电缆基带50欧姆;
对频率较高的RF信号来讲,最常见的是50欧姆的阻抗控制;
频带75欧姆;
对绞线(差分对)为85-100欧姆;
USB、 LVDS、 HDMI、 SATA等一般要做85-100欧姆阻抗控制。

Just when you thought you had mastered Zo, the characteristic impedance of a PCB trace, along comes a data sheet that tells you to design for a specific differential impedance. And to make things tougher, it says things like: “… since the coupling of two traces can lower the effective impedance, use 50 Ohm design rules to achieve a differential impedance of approximately 80 Ohms!” Is that confusing or what!! This article shows you what differential impedance is. But more than that, it discusses why it is, and shows you how to make the correct calculations. Single Trace: Figure 1(a) illustrates a typical, individual trace. It has a characteristic impedance, Zo, and carries a current, i. The voltage along it, at any point, is (from Ohm’s law) V = Zo*i. General case, trace pair: Figure 1(b) illustrates a pair of traces. Trace 1 has a characteristic impedance Z11, which corresponds to Zo, above, and current i1. Trace 2 is similarly defined. As we bring Trace 2 closer to Trace 1, current from Trace 2 begins to couple into Trace 1 with a proportionality constant, k. Similarly, Trace 1’s current, i1, begins to couple into Trace 2 with the same proportionality constant. The voltage on each trace, at any point, again from Ohm’s law, is: V1 = Z11 * i1 + Z11 * k * i2 Eqs. 1 V2 = Z22 * i2 + Z22 * k * i1 Now let’s define Z12 = k*Z11 and Z21 = k*Z22. Then, Eqs. 1 can be written as: V1 = Z11 * i1 + Z12 * i2 Eqs. 2 V2 = Z21 * i1 + Z22 * i2 This is the familiar pair of simultaneous equations we often see in texts. The equations can be generalized into an arbitrary number of traces, and they can be expressed in a matrix form that is familiar to many of you. Special case, differential pair: Figure 1(c) illustrates a differential pair of traces. Repeating Equations 1: V1 = Z11 * i1 + Z11 * k * i2 Eqs. 1 V2 = Z22 * i2 + Z22 * k * i1 Now, note that in a carefully designed and balanced situation, Z11 = Z22 = Zo, and i2 = -i1 This leads (with a little manipulation) to: V1 = Zo * i1 * (1-k)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值