pytorch 实现
在一些论文中,我们可能会看到全局平均池化操作,但是我们从pytorch官方文档中却找不到这个API,那我们应该怎么办?
答案是:
利用现有的pooling API实现全局平均池化的效果。
首先我们简单理解全局平均池化操作。
如果有一批特征图,其尺寸为 [ B, C, H, W], 我们经过全局平均池化之后,尺寸变为[B, C, 1, 1]。
也就是说,全局平均池化其实就是对每一个通道图所有像素值求平均值,然后得到一个新的1 * 1的通道图。
明白这个思路之后,我们就可以很容易实现全局平均池化了。
利用自适应平均池化就可以快速实现。或者自适应最大池化也可以,一样。
In [1]: import torch
In [2]: a = torch.rand