池化层作用机理
我们以最简单的最常用的max pooling最大池化层为例,对池化层作用机理进行探究。其他池化层的作用机理也大致适用这一机理,在这里就不加入讨论。

图片和以下部分内容来自 CS231n
从上面左图可以看到,使用了pool操作其实就是降低图片的空间尺寸。右图使用一个 2 × 2的 池化核(filter),以2为步长(stride),对图片进行max pooling,那么会图片就会尺寸就会减小一半。需要注意,这里是因为 stride = 2,所以图片尺寸才会减少一半的。
CS231n又对池化进行了量化的阐述:

上图表示的意思就是:
- 给定一个图片的三个维度的尺寸, 即【Channel, Height, Width】,以及给定两个超参数池化核尺寸 【F × F】,池化步长【S】,就可以计算池化后的图片尺寸,见上图公式。
- 池化核这个filter是不需要保留参数的,不同于conv filter, 每一个pooling filter就是一个固定的函数,比如max pooling,就是取这个filter覆盖区域像素的最大值而已。所以我们在计算卷积层数的时候,不计入池化层。
- 对于pooling 层,我们通常不需要使用 padding。这是由于采用pooling通常是为了减少一半的图片尺寸,我们使用 kernel

本文深入解析了CNN中的池化层,特别是最大池化层的工作原理。池化层通过减小图像尺寸,增加卷积核的感受野,帮助提取高层特征并减少计算量,防止过拟合。常见池化类型包括F=2,S=2的标准池化和F=3,S=2的覆盖池化。虽然增大池化核会损失更多像素信息,但在很多任务中,池化层因其无参数特性被用于降低维度和计算复杂性。"
128752424,13871089,OSG三维渲染引擎跨平台编译指南,"['三维渲染引擎学习', 'osg', 'OpenSceneGraph', '跨平台开发', '图形学']
最低0.47元/天 解锁文章
1017

被折叠的 条评论
为什么被折叠?



