基于YOLOv8的交通摄像头下车辆检测算法系统

本文介绍了YOLOv8在交通摄像头车辆检测中的改进,包括C2f模块的使用、小目标检测的难点处理、Loss函数的变化和训练结果分析。C2f模块增强了模型的轻量化性能,YOLOv8采用Anchor-Free方法并优化了匹配策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🚀🚀🚀YOLOv8改进专栏:http://t.csdnimg.cn/hGhVK

学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;

1.交通摄像头车辆检测数据集介绍

数据集来源:极市开发者平台-计算机视觉算法开发落地平台-极市科技

数据集类别“car",训练集验证集测试集分别5248,582,291张

下图可以看出都是车辆数据集具有不同尺寸的目标物体,既有大目标又有小目标

 

1.1 小目标检测难点 

本文所指的小目标是指COCO中定义的像素面积小于32*32 pixels的物体。小目标检测的核心难点有三个:

  • 由本身定义导致的rgb信息过少,因而包含的判别性特征特征过少。
  • 数据集方面的不平衡。这主要针对COCO而言,COCO中只有51.82%的图片包含小物体,存在严重的图像级不平衡。具体的统计结果见下图。

2.YOLOv8介绍

改进点:

  1. Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;
  2. PAN-FPN:毫无疑问YOLOv8依旧使用了PAN的思想,不过通过对比YOLOv5与YOLOv8的结构图可以看到,YOLOv8将YOLOv5中PAN-FPN上采样阶段中的卷积结构删除了,同时也将C3模块替换为了C2f模块;
  3. Decoupled-Head:是不是嗅到了不一样的味道?是的YOLOv8走向了Decoupled-Head;
  4. YOLOv8抛弃了以往的Anchor-Base,使用了Anchor-Free的思想;
  5. 损失函数:YOLOv8使用VFL Loss作为分类损失,使用DFL Loss+CIOU Loss作为分类损失;
  6. 样本匹配:YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner匹配方式。

2.1 C2f模块介绍

C2f模块就是参考了C3模块以及ELAN的思想进行的设计,让YOLOv8可以在保证轻量化的同时获得更加丰富的梯度流信息。 

 代码:

class C2f(nn.Module):
    # CSP Bottleneck with 2 convolutions
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

    def forward(self, x):
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

3.训练可视化分析

YOLOv8 summary (fused): 168 layers, 3005843 parameters, 0 gradients, 8.1 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 10/10 [00:18<00:00,  1.90s/it]
                   all        582       6970      0.816      0.676      0.745      0.385

训练结果如下:

P_curve.png

表示准确率与置信度的关系图线,横坐标置信度。

由下图可以看出置信度越高,准确率越高。

PR_curve.png

PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。

 R_curve.png

召回率与置信度之间关系,具体参照 P_curve。

results.png

(1,1),(2,1):该图分别表示训练时和验证时ClOU损失函数的均值,越小方框越准。

(1,2),(2,2):推测为目标检测loss均值,越小目标越准。

(2,4),(2,5):表示在不同IoU阈值时计算每一类中所有图片的AP然后所有类别求取均值。

mAP_0.5:0.95表示从0.5到0.95以0.05的步长上的平均mAP.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会AI的学姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值