YOLOv8-Seg改进:AIFI 助力YOLO ,提升尺度内和尺度间特征交互能力 | 来自于RT-DETR

本文介绍了将RT-DETR的AIFI(尺度内特征交互)应用于YOLOv8,以增强尺度内和尺度间的特征交互,提升目标检测的性能。内容涵盖YOLOv8-Seg的创新、RT-DETR的原理和模型结构,特别是HybridEncoder中的AIFI和CCFM模块,以及IoU感知的查询选择机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🚀🚀🚀本文改进:RT-DETR的AIFI (尺度内特征交互)助力YOLO ,提升尺度内和尺度间特征交互能力

 🚀🚀🚀YOLOv8-seg创新专栏http://t.csdnimg.cn/KLSdv

学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;
1)手把手教你如何训练YOLOv8-seg;
2)模型创新,提升分割性能;
3)独家自研模块助力分割;

1.原理介绍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会AI的学姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值