YOLOv8独家改进: 特征融合创新 | 一种基于内容引导注意力(CGA)的混合融合, IEEE TIP 2024 浙大

本文介绍了将内容引导注意力(CGA)融合方案应用于YOLOv8,以增强目标检测性能,尤其适用于小目标和低对比度场景。CGA通过细化通道的注意力权重,促进了特征的有效融合,提高了模型的表示和泛化能力。通过修改YOLOv8的DEANet.py和task.py,并配置yolov8-CGAFusion.yaml,实现了CGAFusion的集成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 🚀🚀🚀本文改进内容:提出了一种基于内容引导注意力(CGA)的混合融合方案,将编码器部分的低级特征与相应的高级特征有效融合。

 🚀🚀🚀适用性强,适用于小目标,低对比度场景,缺陷检测类项目涨点明显

 🚀🚀🚀如何跟YOLOv8结合:将backbone和neck的特征融合,改进结构图如下

 🚀🚀🚀学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会AI的学姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值