SOTA!4D雷达单模态模型如何比肩多模态?

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

今天自动驾驶之心很荣幸邀请到Qiuchi Zhao来分享名为空间多表达特征融合(SMURF)的新型方法,仅使用4D成像雷达单一模态的数据进行3D目标检测。如果您有相关工作需要分享,请在文末联系我们!

>>点击进入→自动驾驶之心【3D目标检测】技术交流群  

论文作者 | Qiuchi Zhao

编辑 | 自动驾驶之心

ea0b2b75ffb3bfb35cd84832045783ab.png

大家好,很荣幸今天能有机会来这里分享我们的工作。

4D毫米波(mmWave)雷达是一种成本效益较高的车辆感知技术,且在迷雾、沙尘等恶劣驾驶天气条件下具有一定的鲁棒性。然而,该技术的应用受到4D雷达点云数据稀疏性和噪声问题的影响。本文介绍了一种名为空间多表达特征融合(SMURF)的新型方法,仅使用4D成像雷达单一模态的数据进行3D目标检测。SMURF提取了雷达检测点的多表达特征,包括体柱化(pillarization)特征,以及通过核密度估计(KDE)得到的多维高斯混合分布的密度特征。KDE的引入有效地减轻了由于有限角度分辨率和多路径传播导致的测量不准确性。此外,通过捕捉密度特征,KDE还有助于缓解点云稀疏性的问题。我们在View-of-Delft(VoD)和TJ4DRadSet数据集上的实验结果表明,SMURF具有良好的检测性能和较好的模型泛化能力,优于最近提出的基于4D成像雷达单一模态的目标检测模型。此外,在仅使用4D成像雷达的情况下,相比于最近的图像与雷达多模态融合模型,我们的SMURF在TJ4DRadSet数据集上鸟瞰图(BEV)视角下的平均精度提高了1.22%,在VoD数据集的整个标注区域的3D平均精度提高了1.32%。SMURF的推理速度也能够满足实时检测的需要,在这两个数据集上对大多数帧的推理时间不超过0.05秒。该研究凸显了4D毫米波雷达的优势,并为后续关于使用4D成像雷达进行3D物体检测的研究工作提供了强有力的基准。

ae0e8ec77a6e6eb388533a905a6834f1.png

1.引言

传统汽车雷达已经广泛应用于先进驾驶辅助系统(ADAS)和自动驾驶领域,在未来的合作感知系统中也具有潜在应用。然而,与基于激光雷达的感知技术相比,传统雷达感知技术常常面临一些限制,如缺乏高度信息和低分辨率等。这些限制制约了其准确地检测和定位周围环境中的物体的能力。近年来,4D成像雷达的发展成为克服这些限制的一种有希望的解决方案。与传统汽车雷达不同,4D成像雷达可以测量俯仰角,从而获得高度信息。这个额外的维度增强了对环境的理解,并提高了物体检测和定位的准确性。关于4D雷达技术的发展和性能方面的研究在文献中有广泛探讨,一些研究突出了4D雷达的进展,并讨论了该领域出现的各种品牌,也有一些研究证明了4D雷达在短距离感知应用中的卓越性能。

4D雷达的信号处理方案通常涉及使用多输入多输出(MIMO)阵列进行数据采集、距离-多普勒(RD)相干处理、到达角(DOA)估计和点云生成。有许多相关研究专注于4D雷达的点云生成,在ADAS和自动驾驶等应用中显著提高了其准确性和密度。相比传统雷达系统,4D雷达展现出明显优势。

激光雷达点云和4D雷达点云有一些相似之处。然而,来自4D雷达的测量数据很受到噪声的影响,主要是由于雷达信号的多路径传播,其较长的波长以及有限的天线数也导致4D雷达的角分辨率有限。与激光雷达系统产生的较密集点云相比,4D雷达产生的点云更加稀疏,捕捉到的几何和语义信息也更少。因此,现有的专门为密集激光雷达点云开发的3D目标检测算法直接应用于稀疏的4D雷达点云数据时可能会导致性能不理想。

同时,一些现有的基于传统汽车雷达的目标检测模型可能能够直接扩展到基于4D雷达的目标检测。然而,传统雷达系统缺乏对物体高度信息的测量。因此,直接将这些基于传统雷达的算法应用于4D雷达不太合适。

因此,迫切需要开发基于4D雷达数据的有效和高效的3D物体检测模型。为了解决稀疏的4D雷达点云中的噪声消除和有效特征提取的挑战,我们提出了一种多表达特征编码器。具体而言,我们的方法将点云表示为固定大小的柱状网格,并提取每个柱体内的局部特征。这种策略降低了处理4D雷达点云数据的计算成本。此外,为了克服稀疏性和固有噪声带来的限制,我们引入了一种基于核密度估计(KDE)的方法,用于从4D雷达点云中提取密度特征。来自不同对象生成的点往往显示出不同的密度,例如,属于杂波的噪声点是随机分布且密度较低的,而来自同一对象的点则更加集中且遵循一定的模式。通过将体柱化方法与KDE方法相结合,我们提出了一种基于4D雷达数据的多表达特征融合模型,用于3D目标检测。我们的工作的贡献总结如下:

·我们提出了一种新颖的用于3D目标检测的空间多表达融合(SMURF)模型。该模型基于单模态的4D毫米波雷达数据,并利用体柱化和KDE技术从雷达点云中提取多表达特征。这是首次尝试使用KDE从4D毫米波雷达点云中提取额外的密度特征用于3D物体检测的研究。通过提取多维高斯混合分布的密度特征,KDE有效地减轻了点云中的固有噪声和稀疏性的影响。SMURF可以成为未来研究和应用的基线模型。

·为了验证SMURF的有效性和泛化能力,我们在VoD数据集和TJ4DRadSet数据集上进行了实验。结果表明,SMURF超过了最新的基于4D成像雷达的方法的性能,并且比使用4D雷达和相机融合的最新方法的性能相当。

·在MMDetection3D框架中实现的SMURF模型的推理时间对于大多数扫描帧而言不超过0.05秒,满足实时检测的要求。因此,SMURF在实际工程场景中具有广泛的应用潜力。

2. 方法

我们提出的SMURF模型由两个不同的阶段组成。第一阶段是特征编码阶段,包括体柱化分支和点间KDE分支,用于提取点云体柱化特征和KDE特征。然后,在接下来的颈部和头部阶段,颈部由两部分组成,包括多表达特征融合(MRFF)模块和多尺度特征融合(MSFF)模块,其中MRFF用于融合多个表达的特征,而MSFF负责进一步提取和整合多尺度特征。最后,我们采用基于锚框的检测头生成预测结果,包括3D边界框和物体类别等。

A. 特征编码阶段——体柱化分支

6db714f4fb3d5915d94d660179c60ae8.png

随着4D毫米波雷达技术的进步,雷达系统的分辨率显著提高,导致与传统雷达系统相比,点云数据更密集。虽然基于点的检测方法可以提供更大的感受野,但数据量的增加也会带来更高的计算成本。为了解决这个问题,我们在第一条分支中采用了基于柱体的方法。

在体柱化分支中,我们沿和轴将4D雷达点云划分为柱体。设表示非空柱体的数量。每个非空柱体内的点数可能会有所不同,并且可以分配一个参考值。对于包含超过个点的柱体,我们提取个点的随机子集。对于少于个点的柱体,我们人为地添加具有零值的附加点,以确保点的总数等于。接下来,我们将每个单独点的特征扩展到维度:

其中, 表示点的原始特征, 表示每个点相对于体柱质心的距离, 表示每个点相对于体柱几何中心的距离。因此,我们以结构化方式获取了一个大小为 的稀疏张量,它包含了点云信息。之后再通过线性连接层、最大池化层等进一步提取特征,得到尺寸为 的特征向量。最后通过结合位置编码,将其还原为BEV下的尺寸为 的特征图。

B. 特征编码阶段——KDE分支

17e60fd1db4f7632d36ea2b8c5788017.png

为了增强点云的语义特征,我们在特征编码阶段引入了基于非参数估计的KDE方法。在这条核密度估计分支中,我们将输入形状为 的点云张量,其中 表示雷达点的数量, 表示每个雷达点的 坐标以及其他原始特征。为了提取密度特征,我们使用如下图所示的KDE模块:

97edbffbf3236595c441b67d392f50e3.png

每个点 的密度特征 ρ 是通过考虑 坐标和多普勒信息(以多普勒为例)来计算的:

其中, 表示点的多普勒特征, 表示与 之间的距离在一定范围内具有 坐标的其他点 。核函数 被定义为高斯核:

由于使用了高斯核函数,所以雷达检测点的KDE也同时反映了点的多维高斯混合分布。

此外,用于调节核函数影响范围的带宽 对于控制估计密度函数的平滑程度和振荡非常重要。在这个分支中,我们为KDE引入了不同的带宽大小,以从4D雷达点云中提取不同尺寸的物体特征。带宽大小的选择影响KDE中使用的核函数的形状,进而影响对不同尺寸物体的敏感性。具体而言,较小的带宽对应着具有较窄窗口的核函数,对点云中较小的物体具有更高的敏感性。相反,较大的带宽导致核函数更平坦,窗口更宽,能够更好地捕捉与点云中较大对象相关的特征。

在进行KDE后,点云张量的形状被转换为 ,其中 。需要注意的是,4D雷达点云通常包含显著的噪声。当使用由所有点组成的输入张量进行KDE计算时,点云中的固有噪声可能会对密度估计结果产生不利影响,因为密度值可能对所有点都为非零值,包括来自干扰物的噪声点。为了解决这个问题,我们希望为孤立的噪声点分配负的密度值。所以接下来的归一化步骤有助于确保调整表示4D雷达点云的输入张量的密度特征的准确性。对于具有密度特征 ρ 的每个点 ,归一化通过以下方式进行:

其中 和 分别表示点的密度特征的均值和方差; 是一个参数,用于防止由于零方差导致的除零错误。根据每个点 的归一化,可以得到其对应的密度特征 ρ。

如前所述,KDE能够减轻网络检测能力受噪声的影响。4D雷达点云中的噪声点通常呈现出随机分布和孤立现象,导致密度值低于真实信号点。所以通过KDE进行特征提取,可以减小网络对噪声点的敏感性,从而提高检测性能。此外,4D雷达点云本身是稀疏的。属于同一对象的点倾向于相对集中,密集的区域更有可能包含来自同一对象的点。通过使用KDE,可以有效地提取关于点的空间分布和集中程度的有价值信息,增强网络的判别能力,如下图所示:

e3aa7fd08005be47c38bb1ae55b64a3f.png

为了降低计算成本,该分支也引入了体素化方法。在上述归一化过程之后,点云被分割成体素,生成一个形状为 的张量,其中 、 和 表示三维伪图像的深度、高度和宽度。随后,我们使用中间编码层提取更具辨别力的特征。这些层主要由卷积层和中间层(ML)组成。ML是由3D子流形稀疏卷积、稀疏卷积、归一化层和ReLU层组合构成的。这些层的组合有助于从体素化的点云数据中提取更高级别的特征。值得注意的是,3D稀疏卷积在减少冗余计算和推理时间方面具有特殊优势,通过仅为活跃的体素计算特征,它有效地利用了数据的稀疏性同时保留了重要特征。

C. 颈部和头部阶段

SMURF的颈部网络由两个关键组件组成:MRFF模块和MSFF模块。

在MRFF模块中,从体柱化分支获取的形状为 的伪图像与从KDE分支获取的伪图像进行组合,其形状分别为 和 。为了防止过拟合并简化模型结构,我们使用直接沿特征维度进行连接的融合方法。这个融合过程生成了一个形状为 的伪图像,其中 。

为了有效检测多个类别(如汽车和行人)的检测目标,MSFF模块使用不同数量的卷积层来获得多尺度的特征图。这个过程增加了网络的感受野,使其能够捕捉局部和全局特征。所获得的多尺度特征图具有不同的形状,分别为 ,和 。这些特征图表示不同尺度上的特征,每个尺度的空间维度减半。通过在不同尺度上使用卷积层,网络可以捕捉不同级别细节的信息。为了确保后续操作的兼容性,多尺度特征图接着被上采样到相同的尺寸。在上采样过程之后,特征图沿通道维度进行连接,生成一个形状为 的特征图,其中。

最后,为了得到目标检测的预测结果,我们提出的SMURF模型采用一个基于锚框的单阶段检测头,类似于 PointPillars 中使用的方法。网络通过计算损失函数来优化预测的边界框,最后给出3D边界框、类别等预测结果。

3. 实验

A. 数据集与评估指标

在本研究中,我们使用VoD和TJ4DRadSet数据集评估了所提出的SMURF方法的有效性和泛化能力。对于VoD数据集,我们利用从点云提取的原始特征,这些特征由七个维度组成:

其中 表示雷达点的坐标, 表示雷达信号反射强度, 表示相对于自车的径向多普勒速度, 表示绝对多普勒速度, 表示点所属的扫描的时间ID。

另一方面,对于TJ4DRadSet数据集,我们也利用从点云提取的原始特征,这些特征由五个维度组成:

其中SNR表示检测的信噪比。

对于VoD数据集,我们利用累积的5帧雷达点云数据来评估三个不同目标类别的检测结果:汽车、行人和自行车。所采用的评估指标包括每个目标类别的3D平均精度 值,以及平均3D AP 和平均BEV AP 值。这些指标分别是在官方指南中指定的整个注释区域和可驾驶区域上进行计算。按照官方设置,用于计算性能指标的IoU阈值分别设为0.5 (汽车)、0.25 (行人) 和0.25 (自行车)。

另一方面,对于TJ4DRadSet数据集,我们评估了四个目标类别的检测性能:汽车、行人、自行车和卡车。每个类别的IoU阈值设为0.5 (汽车)、0.25 (行人和自行车) 和0.5 (卡车)。与VoD数据集不同,TJ4DRadSet数据集允许根据与车载传感器的距离来指定评估区域。在我们的评估中,我们关注距离雷达70米范围内的物体。对于TJ4DRadSet数据集,考虑的评估指标包括每个类别的BEV AP 和 值。 和 值也是评估SMURF方法在TJ4DRadSet数据集上整体性能的重要指标。

B. 消融实验

为了验证SMURF方法的有效性,我们所选两个数据集上进行了消融实验。下表比较了不包含KDE特征提取的单一特征表达模型与SMURF的性能:

dd279abc06eab0bd4eef33b0ba67040e.png

结果表明,SMURF在所有选定的评估指标上都取得了性能提升。具体来说,在VoD数据集上考虑雷达的整个标注区域时,SMURF对汽车、行人和自行车的 值都有所提高。汽车方面提升了 %,行人方面显著提升了 %,而骑车者方面则大幅提高了 %。这种性能提升可以归因于4D雷达点云的稀疏性,使得较小的物体具有更集中的点,而较大的物体可能无法完全检测到。因此,引入KDE特征提取对于评估较小物体的性能改进贡献更大。此外,所有三类目标的 和 分别增加了 % 和 %。在可驾驶区域中,我们也观察到了显著的性能提高。具体而言,在 指标方面,SMURF在汽车、行人和自行车方面分别实现了 %、% 和 % 的增加。类似地,所有三个类别的 和 值分别显示出了 % 和 % 的改进。

为了进一步验证SMURF的泛化能力,我们在TJ4DRadSet数据集上进行了评估,并且相应的性能指标也在上表中呈现。SMURF在汽车、行人、自行车和卡车的 方面分别取得了 %、%、% 和 % 的提高。同样,在BEV平面上评估时,SMURF在汽车、行人、自行车和卡车的 方面表现出了优越的性能,分别提高了 %、%、% 和 %。此外,所有四个对象类别的 和 值分别增加了 % 和 %。

通过在VoD和TJ4DRadSet数据集上进行的消融实验,我们证明了SMURF的有效性。通过引入从原始点云中提取的密度特征,我们的模型有效地丰富了点云数据中的信息,从而提高了物体检测性能。这些研究结果不仅验证了SMURF的有效性,还为基于4D雷达的物体检测领域的进一步研究和实验提供了坚实的基础。

为了直观地展示我们提出的SMURF方法带来的性能提升,我们对一部分数据进行了可视化,如图所示:

89bb69e3e9d15103463f2f631116aad1.png

图中第一行展示了同步摄像头捕获的图像。第二行显示了每帧雷达点云中对应的真实3D边界框,用红色突出显示。每帧雷达点云中的红色点表示雷达检测点。类似地,第三行展示了没有使用KDE的SMURF模型得到的预测边界框,用深绿色突出显示。最后,第四行展示了从我们提出的SMURF模型得到的预测边界框,用蓝色突出显示。

可视化清楚地突出了我们的SMURF方法相比使用单一的PointPillars特征表达在增强检测能力方面的优势。通过引入KDE特征表达,SMURF在区分哪些点可能属于同一个物体方面表现出色,从而几乎在各种情况下显著提高了检测准确性,特别是对于行人和自行车等小物体。可视化还展示充分显示了SMURF模型相比于使用单一特征表达模型,对行人和自行车的漏检和误报更少。此外,即使对于稀疏分布的汽车雷达检测点,SMURF方法也展现了一定程度的检测性能,如上图中的 案例所示。

C. 与SOTA对比

在这项研究中,我们对VoD和TJ4DRadSet数据集上的SMURF方法的实验性能进行了全面评估。为了提供全面的比较,我们将我们的方法与原本设计用于LiDAR点云的各种3D目标检测器进行了对比,包括基于锚点的检测器PointPillars,无锚点检测器CenterPoint,以及最先进的方法PillarNeXt。此外,我们还将我们的SMURF方法与专门设计用于4D雷达的最新提出的3D目标检测方法进行了比较,例如RPFA-Net和RadarPillar-Net 。为了进一步评估我们方法的有效性,我们将其与RCFusion进行了比较,后者代表了利用图像和4D雷达融合的3D目标检测的最新基准。以下将深入探讨从这些比较评估中得出的更详细的实验结果和见解。

我们提出的SMURF目标检测模型在检测准确率方面表现优异,相比于几种传统的检测方法,展现出较高的检测准确性。在VoD数据集上评估SMURF方法显示出,相比于无锚点检测器CenterPoint,我们取得了显著的改进,在整个标注区域和可驾驶区域的 分别增加了 % 和 %。尽管无锚点检测器PillarNeXt在利用LiDAR点云进行3D目标检测方面取得了最新的最优结果,我们的SMURF方法在 方面仍然超过它,在整个标注区域和可驾驶区域分别提高了 % 和 %。与基于锚点的检测器PointPillars和RadarPillarNet相比,我们的方法始终表现出更优越的性能,在整个标注区域的 至少提高了 %,在可驾驶区域的 至少提高了 %。与VoD数据集的发现类似,我们的SMURF方法在TJ4DRadSet数据集上也取得了显著的性能改进。

在VoD数据集上的具体结果如下表所示:

3b0040f98b57a151ae53fd54cbc19362.png

在TJ4DRadSet数据集上的具体结果如下表所示:

fb02cb72d2f4ed8739af146d9bf5fdfa.png

尽管仅依赖雷达单模态数据,SMURF也展示了有竞争力的性能,并在某些情况下优于最新的多模态融合方法RCFusion。例如,在VoD数据集上,SMURF在整个标注区域和可驾驶区域上显著改善了所有三类目标的 ,如下表所示。值得注意的是,我们的方法在整个标注区域中自行车的检测准确性明显提高了 %。在TJ4DRadSet数据集上,我们的方法也同样在总体上表现出相当的性能,甚至在BEV的检测结果超过了RCFusion。这突显了SMURF利用单模态4D雷达点云数据进行准确物体检测的有效性。

bdf0821d9ed35a7f37fea9f0dd43dbf4.png

此外,通常利用图像数据需要大量的计算资源,因为数据量很大。相比之下,SMURF仅凭借4D雷达点云数据就实现了显著的性能表现,这表明它在使用更少计算资源时就有可能实现更好的目标检测结果。

另外,我们提出的SMURF模型在MMDetection3D框架中实现时,具有高效的推断速度。在VoD数据集的验证集上,每帧的平均推断时间约为0.033秒,在TJ4DRadSet数据集的测试集上约为0.04秒。这些结果表明我们的模型可以有效满足实际应用中实时目标检测的要求。

结论

4D雷达数据的利用面临着检测点稀疏、噪声以及现有方法特征提取能力有限等挑战。在本文中,我们提出了SMURF方法,使用4D成像雷达点云进行3D目标检测。在特征编码阶段,我们采用基于体柱化的点云表达来降低计算开销。同时,为了减轻原始点云中固有噪声带来的不利影响,并从稀疏点云中提取更丰富的语义信息,我们引入了KDE方法。通过融合点云的多种特征表达,我们成功提高了3D目标检测的精度。

通过在VoD和TJ4DRadSet数据集上进行大量实验评估,我们已经展示了SMURF方法的有效性和泛化能力。我们的结果表明,即使与利用4D雷达和图像信息融合的最先进多模态模型相比,SMURF也提供了有竞争力的性能。

通过展示出优越的性能,SMURF有潜力成为未来使用4D雷达进行3D目标检测领域的强大基准。其紧凑的架构和高推断速度进一步提高了其在需要实时目标检测能力的实际工程应用中的可行性。改进的检测准确性使SMURF成为各种实际场景的有望解决方案,比如自动驾驶等。

投稿作者为『自动驾驶之心知识星球』特邀嘉宾,如果您希望分享到自动驾驶之心平台,欢迎联系我们!

① 全网独家视频课程

BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码学习)

588e4d0b5629a3c6275fda7db85dbd30.png 视频官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

ca7e4a6a38739a160cec028ecf6718f4.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

efbefc6dcaa5ac621408d0f89b21330f.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值