三维目标检测---RPVNet论文解读

更多内容更新于个人博客 twn29004.top
image-20211116125355498

代码链接

RPVNet: A Deep and Efficient Range-Point-Voxel Fusion Network for LiDAR Point Cloud Segmentation (arxiv.org)

论文总结

本文实现了一种大场景下的点云语义分割网络,并在SemanticKITTI数据集上实现了1st的结果。其主要通过一种融合的方法来实现。不同于以往的使用基于点,基于体素和基于深度图(Range Image)的方法.但是这些方法都有一定的缺点。之前融合的方法也仅是融合其中的两类。本文提出了一种融合三类数据的网络。网络的主要结构如下:

image-20211116130031567

网络主要分为三个分支,使用了经典的Encoder和Decoder的结构。三个分支分别是基于体素的,基于点云的和基于深度图的。分别使用对应的网络提取各个分支的特征,然后作者使用了点这个分支来作为中间节点,来融合不同来源的数据。不同特征进行融合的算法如下图所示:

image-20211116132950759

将其他特征映射到基于点的表示的话,可以使用最近邻插值或者三线性插值或者双线性插值的方法。以基于深度图到基于点的表示为例:通过计算该点在深度图上的周围的四个

image-20211116134822778

其中, F R ( u ) F_R(u) F

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值