更多内容更新于个人博客 twn29004.top

论文总结
本文实现了一种大场景下的点云语义分割网络,并在SemanticKITTI数据集上实现了1st的结果。其主要通过一种融合的方法来实现。不同于以往的使用基于点,基于体素和基于深度图(Range Image)的方法.但是这些方法都有一定的缺点。之前融合的方法也仅是融合其中的两类。本文提出了一种融合三类数据的网络。网络的主要结构如下:

网络主要分为三个分支,使用了经典的Encoder和Decoder的结构。三个分支分别是基于体素的,基于点云的和基于深度图的。分别使用对应的网络提取各个分支的特征,然后作者使用了点这个分支来作为中间节点,来融合不同来源的数据。不同特征进行融合的算法如下图所示:

将其他特征映射到基于点的表示的话,可以使用最近邻插值或者三线性插值或者双线性插值的方法。以基于深度图到基于点的表示为例:通过计算该点在深度图上的周围的四个
其中, F R ( u ) F_R(u) F
最低0.47元/天 解锁文章

3512

被折叠的 条评论
为什么被折叠?



