BEV跟踪基线 | BEVTrack:基于鸟瞰图中的点云跟踪

作者 | 敢敢のwings  编辑 | 古月居

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心目标跟踪技术交流群

本文只做学术分享,如有侵权,联系删文

0.简介

本文介绍了BEVTrack:鸟瞰图中点云跟踪的简单基线。由于点云的外观变化、外部干扰和高度稀疏性,点云的3D单目标跟踪(SOT)仍然是一个具有挑战性的问题。值得注意的是,在自动驾驶场景中,目标物体通常在连续帧间保持空间邻接,多数情况下是水平运动。这种空间连续性为目标定位提供了有价值的先验知识。然而,现有的跟踪器通常使用逐点表示,难以有效利用这些知识,这是因为这种表示的格式不规则。因此,它们需要精心设计并且解决多个子任务以建立空间对应关系。本文《BEVTrack: A Simple Baseline for 3D Single Object Tracking in Bird’s-Eye View》(https://arxiv.org/pdf/2309.02185.pdf)中的BEVTrack是一种简单而强大的三维单目标跟踪基线框架。在将连续点云转换为常见的鸟瞰图表示后,BEVTrack固有地对空间近似进行编码,并且通过简单的逐元素操作和卷积层来熟练捕获运动线索进行跟踪。此外,为了更好地处理具有不同大小和运动模式的目标,BEVTrack直接学习潜在的运动分布,而不像先前的工作那样做出固定的拉普拉斯或者高斯假设。BEVTrack在KITTI和NuScenes数据集上实现了最先进的性能,同时维持了122FPS的高推理速度。目前这个项目已经在Github(https://github.com/xmm-prio/BEVTrack)上开源了。

1.主要贡献

本文的贡献总结如下:

1)本文提出了BEVTrack,这是一种简单而强大的三维单目标跟踪的基线框架。这种开创性的方法通过BEV表示有效地利用了空间信息,从而简化了跟踪流程设计;

2)本文提出了一种新型的分布感知回归策略,其直接学习具有不同大小和各种运动模式的目标的潜在运动分布。该策略为跟踪提供准确的指导,从而提供了性能,同时避免了额外的计算开销;

3)BEVTrack在保持高推理速度的同时,在两个主流的基准上实现了最先进的性能

2.概述

ca6c70c3c1130e011a5e5b9e5e0abab3.png

288ca87c055e93b6ba1cedf36d18a3b5.png

其中F是跟踪器学习到的映射函数。

根据公式(1),我们提出了BEVTrack,这是一个简单但强大的3D单目标跟踪基准框架。BEVTrack的整体架构如图2所示。它首先利用共享的VoxelNext [29]提取3D特征,然后将其压缩以获得BEV表示。随后,BEVTrack通过串联和多个卷积层融合BEV特征,并通过MLP回归目标的平移。为了实现准确的回归,我们采用了一种新颖的分布感知回归策略来优化BEVTrack的训练过程。

00ff6cf03898d8c0e1fa540a927fe363.png

图2. BEVTrack的示意图。它使用VoxelNet从连续帧中提取特征,进一步将其转换为BEV表示。然后,通过串联和几个卷积层,它融合BEV特征并捕捉运动线索。最后,通过多层感知机(MLP)回归运动偏移量。在训练过程中,我们提出了一种分布感知回归策略来优化BEVTrack。

3.特征提取

7b17f1c79d0816befee793eab1ae335e.png

4.基于BEV的运动建模

4314a7744d51e61f14e38bb5e413a457.png

9433ce35eb085ff5550d035684598722.png

其中Conv表示BMM中的卷积块,[;][;]表示连接运算符。


其中H^′、W^′和C^′分别表示空间维度和特征通道数。


最后,我们使用最大池化层和多层感知器(MLP)来预测目标平移偏移,即,

96d446157f5ad8284cb1eb43afa0f72e.png


其中C ∈ \mathbb{R}^6表示目标平移偏移\bar{u} ∈ \mathbb{R}^3的期望值和标准差σ ∈ \mathbb{R}^3,这将在第5节中详细介绍。通过将平移应用于目标的最后状态,我们可以在当前帧中定位目标。

5.分布感知回归

在先前的工作中,通常在训练过程中使用传统的L1或L2损失来进行目标位置回归,这实际上对目标位置的分布做出了固定的拉普拉斯或高斯假设。与之相反,我们提出直接学习底层运动分布,并引入一种新颖的分布感知回归策略。通过这种方式,可以为跟踪提供更准确的指导,使BEVTrack能够更好地处理具有不同大小和移动模式的物体。


在[11]的基础上,我们使用重新参数化来建模目标平移偏移u∼P(u)的分布。具体而言,P(u)可以通过对来自零均值分布z∼P_Z(z)进行缩放和平移得到,其中u=\bar{u}+σ·z,其中\bar{u}表示目标平移偏移的期望,σ表示分布的尺度。P_Z(z)可以通过归一化流模型(例如,real NVP [2])进行建模。给定这个变换函数,可以计算出P(u)的密度函数:

cfc4579360ab8a26bbb54883be14902a.png


与之前仅回归确定性目标翻译偏移量u的方法相比,我们的方法专注于回归两个不同的参数:目标翻译偏移量u的期望值\bar{u}和其标准差σ。


在这项工作中,我们采用了[11]中的残差对数似然估计(RLE)来估计上述参数。RLE将分布P_Z(z)分解为一个先验分布Q_Z(z)(例如,拉普拉斯分布或高斯分布)和一个学习到的分布G_Z(z | θ)。为了最大化方程(4)中的似然函数,我们可以最小化以下损失函数:

cd2e5d4450edebeb1952220aa753e467.png

6.参考链接

https://arxiv.org/pdf/2309.02185.pdf

投稿作者为『自动驾驶之心知识星球』特邀嘉宾,欢迎加入交流!

① 全网独家视频课程

BEV感知、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测车道线检测轨迹预测在线高精地图世界模型点云3D目标检测目标跟踪Occupancy、cuda与TensorRT模型部署大模型与自动驾驶Nerf语义分割自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

baa4d9b69a0d167adbc230d58f5ad843.png

网页端官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

国内最大最专业,近3000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案大模型、端到端等,更有行业动态和岗位发布!欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频

f4fa9737e1426258e022dc67262ed452.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦感知、定位、融合、规控、标定、端到端、仿真、产品经理、自动驾驶开发、自动标注与数据闭环多个方向,目前近60+技术交流群,欢迎加入!

自动驾驶感知:目标检测、语义分割、BEV感知、毫米波雷达视觉融合、激光视觉融合、车道线检测、目标跟踪、Occupancy、深度估计、transformer、大模型、在线地图、点云处理、模型部署、CUDA加速等技术交流群;

多传感器标定:相机在线/离线标定、Lidar-Camera标定、Camera-Radar标定、Camera-IMU标定、多传感器时空同步等技术交流群;

多传感器融合:多传感器后融合技术交流群;

规划控制与预测:规划控制、轨迹预测、避障等技术交流群;

定位建图:视觉SLAM、激光SLAM、多传感器融合SLAM等技术交流群;

三维视觉:三维重建、NeRF、3D Gaussian Splatting技术交流群;

自动驾驶仿真:Carla仿真、Autoware仿真等技术交流群;

自动驾驶开发:自动驾驶开发、ROS等技术交流群;

其它方向:自动标注与数据闭环、产品经理、硬件选型、求职面试、自动驾驶测试等技术交流群;

扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

a1d81011031cac0ea0570bbe52a75911.jpeg

④【自动驾驶之心】平台矩阵,欢迎联系我们!

e35f1e256cc3ca2b4592b87d07dac054.jpeg

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值