ECCV 2024 Workshop | 自动驾驶视觉重定位挑战赛正式启动!

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心SLAM技术交流群

编辑 | 自动驾驶之心

32af6328a4ce61a644cab941cf5bb9b7.jpeg

近年来,空间人工智能(Spatial AI) 取得了迅猛的发展。为进一步推动该领域的研究与应用,慕尼黑工业大学与苏黎世大学将联合举办Spatial AI Workshop,并于ECCV 2024大会期间聚焦多项前沿课题。Workshop旨在通过融合计算机视觉与空间理解,推动智能系统的发展,使其具备稳健的定位能力、增强的感知能力,以及对复杂场景的精确解析。

与此同时,我们将举办自动驾驶视觉重定位挑战赛,邀请全球的学术界、工业界及个人开发者参与这一竞赛,共同探索自动驾驶中的视觉重定位难题。期待您的积极参与与贡献!

c8e946e1006471c83c98f395c7bc3eac.png

在本次Workshop中,我们将重点讨论以下议题:

  • 3D场景理解与重建

  • 空间信息与视觉信息的融合

  • 空间人工智能在机器人、自动驾驶和增强现实(AR)中的应用

  • 基于地图的定位技术

  • 空间人工智能中的人机交互

  • 空间人工智能的可扩展性挑战

  • 空间人工智能中的伦理问题

🔍 挑战赛任务说明

本次挑战赛的任务聚焦于自动驾驶场景中的视觉重定位,参赛者需要开发算法,精确估计参考序列中的图像与目标序列之间的6自由度相对位姿(6DOF relative pose),算法的评估基于4Seasons数据集

挑战任务要求参赛者应对多种季节和复杂感知条件下的视觉重定位问题,包括白天与夜晚、不同天气和光照变化下的场景。这些场景涵盖了多层停车场、城市道路(包括隧道)、乡村和高速公路等多样环境,极大考验了算法的鲁棒性与适应性。参赛者需要在这些条件下开发出能够精确定位的算法,面对诸如视觉里程计、全局场所识别和基于地图的重定位跟踪等复杂任务。这些多样环境中的定位准确性和鲁棒性将成为评估算法性能的关键标准。

挑战赛信息与数据集获取地址:SpatialAI-ECCV2024-Challenge-Github

📅 竞赛安排

  • 提交截止日期:2024年9月22日 24:00 (CEST)

  • 颁奖典礼与报告展示:获胜团队将被邀请于2024年9月29日上午在ECCV 2024 Spatial AI Workshop上展示其成果。

🏆 奖项设置

  • 🥇 一等奖:1000欧元

  • 🥈 二等奖:500欧元

📂 参赛信息

  • 请将方案结果打包为单个zip文件,发送至官方邮箱:spatialai-eccv2024@googlegroups.com,邮件抬头依照“ ECCV SpatialAI challenge | team name ”的格式。

  • 所有参赛者需提交一篇方案的解释文档,可以是已发表的论文、arXiv预印本,或提交给Workshop的常规投稿文。

  • 禁止提交完全基于现有开源项目且未做任何创新的结果。

  • 允许使用额外的训练数据或预训练模型,但参赛者必须详细说明所使用的训练数据来源。禁止使用测试序列进行训练

  • 我们鼓励来自学术界、工业界以及个人开发者自由参与各种方法的测试。

📖 更多链接

  • Workshop官方网站:https://sites.google.com/view/spatial-ai-eccv24

  • 4Seasons数据集:https://www.4seasons-dataset.com

✉️ 联系方式

如果有任何问题,请发送邮件至:spatialai-eccv2024@googlegroups.com

我们期待您的参与,推动视觉重定位技术的进一步发展!

投稿作者为『自动驾驶之心知识星球』特邀嘉宾,欢迎加入交流!重磅,自动驾驶之心科研论文辅导来啦,申博、CCF系列、SCI、EI、毕业论文、比赛辅导等多个方向,欢迎联系我们!

ddbabcd7b6756a628ca92cc9801d8477.jpeg

① 全网独家视频课程

BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测车道线检测轨迹预测在线高精地图世界模型点云3D目标检测目标跟踪Occupancy、cuda与TensorRT模型部署大模型与自动驾驶Nerf语义分割自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

7c3a0c8badc94239c61f40eacba1a05f.png 网页端官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

国内最大最专业,近3000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案大模型、端到端等,更有行业动态和岗位发布!欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频

d6fd095e52daba792dc0df9fb367436c.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦感知、定位、融合、规控、标定、端到端、仿真、产品经理、自动驾驶开发、自动标注与数据闭环多个方向,目前近60+技术交流群,欢迎加入!扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

94532e833b8771f0ee85add5535aa2e1.jpeg

④【自动驾驶之心】全平台矩阵

f64848fd124af236b319766404af3bc9.png

### 参与ECCV 2024关于视觉重建的研究或会议 #### 研究论文和主题概述 欧洲计算机视觉国际会议(ECCV)是一个重要的学术活动,专注于计算机视觉领域最新的研究进展。对于即将举行的ECCV 2024,预计会有大量涉及视觉重建方面的高质量研究工作被提交并讨论。 视觉重建是指通过图像或其他形式的数据来恢复三维场景结构的过程,在此过程中可能涉及到多种技术和算法的应用。具体来说,该领域的研究可以分为几个主要方向: - **多视角几何**:利用来自不同角度拍摄的一系列二维图片构建物体或环境的三维模型[^1]。 - **单目深度估计**:仅依靠一张照片预测其对应的深度图,从而实现简单的3D建模效果。 - **光场成像技术**:捕捉光线的方向信息以获得更精确的空间感知能力。 - **基于学习的方法**:采用机器学习尤其是深度神经网络来进行高效的特征提取以及复杂的映射关系建立。 为了更好地准备参加此类高水平的专业论坛,建议关注以下几个方面的工作: - 浏览往届ECCV及其他顶级会议上发表的相关文章,了解当前最前沿的技术趋势和发展动态; - 探索开源项目库中的实际案例分析,加深对理论知识的理解程度; - 积极参与到在线社区和技术交流平台上的讨论当中去,与其他研究人员分享见解、解决问题共同进步。 ```python import numpy as np from skimage import io, color from matplotlib import pyplot as plt def load_image(file_path): img = io.imread(file_path) gray_img = color.rgb2gray(img) return gray_img image_data = load_image('example.jpg') plt.imshow(image_data, cmap='gray', interpolation='nearest') plt.show() ``` 上述代码展示了如何加载并显示灰度化处理后的测试图像,这一步骤通常作为后续预处理的基础操作之一用于各种类型的视觉重建任务之中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值