- 博客(116)
- 收藏
- 关注
转载 2026秋招端到端自动驾驶,面试上来就问联合预测~
传统的预测方式仅基于交通场景的历史信息来预测未来的可能性,这种预测方式是与下游的规划解耦的,然而在实际中预测和规划是耦合的,预测会受到规划的影响,规划也会受到预测的影响。现任业内某大厂高级预测决策算法工程师,负责预测决策框架的设计和优化,精通数字驱动的预测决策领域的各种处理方法和技巧,欢迎大家一起交流学习。更重要的是,本课程重点的两个工程项目,可以直接写入简历!学完本章,大家将对轨迹预测领域有更深层次的认知,并掌握或许是目前全业界唯一一个能用的联合预测方案的核心技法,真正做到遥遥领先!
2025-04-26 00:02:03
424
转载 (2025|阿里,DiT,时空 VAE,多模态(文本,图像,视频,音频)生成)Wan:开放且先进的大规模视频生成模型
多采用 3D U-Net 结构(VDM),或 1D 时间 + 2D 空间注意力结构(Zhou et al., 2022),最新架构则采用Diffusion Transformer(DiT)结构(Peebles & Xie, 2023),以 Transformer 替代 U-Net,在视觉任务中表现优越。:Kling(快手,2024.06)、Hailuo(海螺,MiniMax,2024.09)、Sora(OpenAI,2024)、Runway(2024.06)、Vidu(声树AI,2024.07);
2025-04-26 00:02:03
533
转载 肝了几个月,手搓的自动驾驶小车终于和大家见面了~
1年内支持售后(非人为损坏),邮费自付。保修期内因操作失误/修改代码等个人原因导致损坏的,我司提供免费维修。自动驾驶之心团队推出的教研一体轻量级解决方案,支持感知、定位、融合、导航、规划等多个功能平台,阿克曼底盘。原价36999元,现在支付定金1000元抵扣3000,由于订单已经启动,优先锁定的安排组装发货。我们测试了室内、室外、地库等场景下感知、定位、融合、导航规划等功能;以下为产品说明书部分内容,涉及硬件、传感器参数、软件、维修等内容。支持二次开发+二次改装!1.5m/s(最大可到2m/s)
2025-04-25 15:21:53
437
转载 Qwen3超前分析报告:Transformers PR代码完全解读~
为保证恒定的计算成本,激活的路由专家将减少相应的数量,如上图所示。从对比代码中看,Qwen3_moe删除了共享专家部分,这里猜测Qwen团队应该是做了相关的实验,笔者之前也猜测15B应该是他们MoE的最低门槛参数量的模型,应该还有更大的模型,而该模型框架要适配他们所有的MoE模型的,因此应该是有没有共享专家机制都不会影响最终的模型性能,而使用了共享专家机制的话shared_experts需要过多的资源,其他的专家所在的设备有可能不能有效利用,因此综合考虑之后Qwen团队选择直接删掉该模块也是合情合理的。
2025-04-25 07:30:46
783
转载 从BEV到端到端,谈谈自动驾驶数据闭环的核心~
Camera/Lidar 联合标注、 3D OCC分割、环视Camera BEV、端到端标注... 如何向特斯拉那样,完成vector space 的自动化标注,目前各家都在搭建自己的自动化真值系统。老师还特别准备了闭环仿真DrivingGaussian算法的讲解,闭环仿真是端到端自动驾驶的刚需,在4D自动标注的基础上,进一步扩展同学们的视野。:自动驾驶量产算法功能验证可行后,下一步就需要推进场景泛化,不同城市、道路、天气、交通状况的数据如何挖掘,又如何保证标注算法的性能,仍然是当前业内量产的痛点;
2025-04-25 07:30:46
390
转载 25秋季PHD招生 | TAMU:3D视觉+多模态
🤝 实习机会: 大力支持学生从第一年起进行暑期实习,我与 NVIDIA Research, Meta Reality Lab, Google AR, Qualcomm, Alibaba 保持长期良好合作。我即将在2025年秋季加入Texas A&M University, ECE系担任助理教授 (Assistant Professor), 我博士毕业于UT Austin。🎨 3D内容生成 (AIGC): 3D扩散模型、3D自回归模型等。🔮 3D表示学习: 3D预训练、高效3D表征、实时3D系统等。
2025-04-25 07:30:46
372
转载 ICLR 2025杰出论文!Meta「分割一切2」论文等获奖~
从理论上,作者证明了这种投影方式可以确保在查询保留知识时,经过编辑后的大型语言模型的输出保持不变,从而缓解了知识被扰乱的问题。在本文中,研究者通过若干案例分析,解释浅层安全对齐为何会存在,并揭示其如何普遍性地贡献于近年来发现的多种 LLM 脆弱性,包括对对抗性后缀攻击(adversarial suffix attacks)、预填充攻击(prefilling attacks)、解码参数攻击(decoding parameter attacks)和微调攻击(fine-tuning attacks)的易感性。
2025-04-25 07:30:46
418
转载 自动驾驶已进入下半场,这些回答希望有帮助~
星友们也都是卧虎藏龙,主要来自地平线、蔚来、小鹏、理想汽车、AI Lab、商汤科技、旷视科技、百度、阿里、网易、Momenta、Intel、Nvidia、赢彻科技、图森未来、智加科技、AutoX、大疆、上汽、集度、斑马、华为等业界知名公司,以及苏黎世理工、卡耐基梅隆大学、普渡大学、东京大学、香港中文大学、香港科技大学、香港大学、清华大学、上海交大、复旦大学、浙江大学、中科大、南京大学、东南大学、同济大学、上海科技大学、哈工大等国内外知名高校;你想多LV融合,得参考LV融合相关的工作呀,有比较成熟的方法了。
2025-04-24 13:41:29
438
转载 CMU最新SOTA!ZeroGrasp:同时执行3D重建与抓取(CVPR2025)
最近,几项研究表明,在运行时间、准确性和分辨率方面,稀疏体素表示优于体素和类NeRF的隐式形状表示,尤其对于基于回归的零样本3D重建。对基线和zerograsp都进行了评估,我们的方法仅在GraspNet-1B数据集上训练,以及在GraspNet-1B数据集和ZeroGrasp-11B的组合上训练,在GraspNet-1B基准测试中取得了最先进的性能。通过检测抓取器与重建模型的相交情况,剔除存在碰撞的抓取姿态,显著提升复杂场景下的抓取可靠性(对比实验表明,基于重建的碰撞检测使AP指标提升10.6%)。
2025-04-24 07:32:06
573
转载 问鼎闭环SOTA!HiP-AD:分层多粒度规划助力端到端暴涨20个点~
它包括三个独立的自注意力机制(self-attention mechanisms),每个机制专门负责一个任务,并且还包含一个统一的自注意力模块,用于在不同任务之间进行交互。如图左下角所示,该模块为每个任务的时间交互设计了三种不同的 跨注意力机制(cross-attention mechanisms),此外还包含一个 额外的跨注意力机制,专门用于增强 规划查询(planning query) 与 历史感知查询(temporal perception queries) 之间的交互,重点关注历史的周围环境元素。
2025-04-24 07:32:06
444
转载 分享一些自动驾驶私藏和整理的技术资源~
星友们也都是卧虎藏龙,主要来自地平线、蔚来、小鹏、理想汽车、AI Lab、商汤科技、旷视科技、百度、阿里、网易、Momenta、Intel、Nvidia、赢彻科技、图森未来、智加科技、AutoX、大疆、上汽、集度、斑马、华为等业界知名公司,以及苏黎世理工、卡耐基梅隆大学、普渡大学、东京大学、香港中文大学、香港科技大学、香港大学、清华大学、上海交大、复旦大学、浙江大学、中科大、南京大学、东南大学、同济大学、上海科技大学、哈工大等国内外知名高校;这么多的领域问题,需要行业最专业的回答。
2025-04-23 21:19:32
418
转载 顶会上岸自动驾驶大厂!欢迎BEV/端到端/大模型/3DGS方向砸来~
辅导老师介绍:毕业时获得华为天才少年,在顶级AI会议如CVPR、ICCV、ECCV、NIPS等发表论文30余篇,引用量6000+。去年的成果还算不错,几个同学中了CVPR和ICRA等会议,今年和老师们沟通过后,准备继续辅导几名同学冲下顶会,感兴趣的同学可以咨询,辅导方向如下。辅导老师2介绍:在CVPR、ICCV、ICML、TPAMI、AAAI、ECCV上发表论文多篇;辅导老师介绍:国内TOP2博士,ECCV、CVPR发表论文多篇,多个主流感知方案的贡献者;端到端自动驾驶、OCC、BEV、世界模型方向;
2025-04-23 11:10:40
357
转载 浅谈单目3D目标检测中的“BEV框架”与“DETR框架”
深度在MonoDETR中,引导前景深度区域(实际上这一点很容易就被分割算法取代了,当前的SAM能够得到一个非常精确的车辆mask,一个轻量级、跟3D检测同步训练的分割模块也能得到尚可的分割效果),深度引导的前景区域实质上跟深度值并没有很大关系,区分前景和背景只需要一个相对的深度差,比如背景的深度是0左右,车的深度是4.5m还是3.5m都能区分前景和背景,只不过绝对深度也能做到这一点。首先BEV框架利用的是全局的深度信息,整个场景(体素空间、BEV空间)的恢复都依赖于深度信息的准确度。
2025-04-23 07:30:39
404
转载 SOTA!BlockGaussian:大规模场景重建速度5倍提升
相比之下,3D高斯泼溅(3DGS)凭借显式点云场景表示和快速渲染速度,展现出更大的潜力,尤其适用于大规模场景。渲染新视角时,BlockGaussian采用与原始3D高斯泼溅相同的可微渲染管线:给定目标相机位姿和 intrinsics 参数,由所有分块高斯基元构成的场景表示被投影至像平面,按深度排序进行alpha混合合成视图(公式1)。:通过扰动训练相机位姿生成伪视图,利用渲染深度图从原始视角扭曲真实图像,计算伪视图的损失,从而在不引入额外区域的情况下监督空域,显著提升块融合质量(尤其是交互式渲染)。
2025-04-23 07:30:39
1046
转载 全天候鲁棒3D目标检测!从多模态到多智能体的新一代范式(AAAI‘25 & CVPR‘25)
为了解决这些问题,我们引入了L4DR,这是一种天气鲁棒的3D目标检测方法,可以有效地实现LiDAR和4D雷达的融合。它在不同雾度下提供了显著的性能提升,与传统的仅使用激光雷达的方法相比,3D mAP提高了20.0%。随后,我们提出了一种新的用于3D目标检测的协同LiDAR-4D雷达融合流水线,并采用各种融合策略来实现。除此之外,我们的MDD模块在雾/雪条件下将base融合模型的性能进一步提高了5.73%/6.70%,几乎不会干扰正常性能。车道线检测、2D/3D目标跟踪、2D/3D目标检测、BEV感知。
2025-04-23 07:30:39
651
转载 全天候鲁棒3D目标检测!从多模态到多智能体的新一代范式(AAAI‘25 & CVPR‘25)
为了解决这些问题,我们引入了L4DR,这是一种天气鲁棒的3D目标检测方法,可以有效地实现LiDAR和4D雷达的融合。它在不同雾度下提供了显著的性能提升,与传统的仅使用激光雷达的方法相比,3D mAP提高了20.0%。随后,我们提出了一种新的用于3D目标检测的协同LiDAR-4D雷达融合流水线,并采用各种融合策略来实现。除此之外,我们的MDD模块在雾/雪条件下将base融合模型的性能进一步提高了5.73%/6.70%,几乎不会干扰正常性能。车道线检测、2D/3D目标跟踪、2D/3D目标检测、BEV感知。
2025-04-23 07:30:39
324
转载 耗时半年造出自动驾驶小车!我的智能小车炼成记~
1年内支持售后(非人为损坏),邮费自付。保修期内因操作失误/修改代码等个人原因导致损坏的,我司提供免费维修。自动驾驶之心团队推出的教研一体轻量级解决方案,支持感知、定位、融合、导航、规划等多个功能平台,阿克曼底盘。原价34999元,现在支付定金1000元抵扣2000,由于订单已经启动,优先锁定的安排组装发货。我们测试了室内、室外、地库等场景下感知、定位、融合、导航规划等功能;以下为产品说明书部分内容,涉及硬件、传感器参数、软件、维修等内容。支持二次开发+二次改装!1.5m/s(最大可到2m/s)
2025-04-22 18:00:00
408
转载 合伙人招募!端到端VLA/扩散模型/世界模型/联合预测大佬加盟~
自动驾驶之心是国内首个面向自动驾驶与具身智能领域的自媒体平台,吸引了近300+自动驾驶公司与国内外知名高校的关注。诚邀您和自动驾驶之心一起在科研辅导、课程开发、比赛指导等多个方向展开合作,自动驾驶之心将提供业内领先的待遇和报酬。欢迎咨询微信wenyirumo,也可扫码直接添加,备注:自动驾驶之心合作咨询。背景要求:工业界3年以上经验,学术界全球top200高校博士、博后。端到端自动驾驶、3D目标检测、BEV感知、在线高精地图等相关方向。数据闭环、扩散模型、联合预测、大语。言模型、世界模型、SLAM、
2025-04-22 13:36:32
362
转载 DiffAD:自动驾驶的统一扩散建模方法~
传统的自动驾驶系统建立在模块化架构之上,感知、预测和规划都是独立开发的,然后集成到车载系统中。具体来说,将感知、预测和规划中的异构目标栅格化到统一的鸟瞰图 (BEV) 空间中,从而将自动驾驶问题重塑为条件图像生成问题之一。协调复杂性:由于每个任务头都使用不同的目标函数独立优化,并且目标的形状和语义含义各不相同,因此整个系统变得支离破碎,难以进行连贯训练 [5]。扩散模型,也称为基于分数的生成模型 [14, 39, 42],在正向(扩散)过程中逐渐将噪声注入数据,并通过反向(去噪)过程从噪声中生成数据。
2025-04-22 07:30:51
425
转载 TITS最新!基于混合策略强化学习的泊车路径规划算法~
本文提出了一种基于强化学习的混合策略路径规划器(HOPE: Hybrid pOlicy Path plannEr),在模拟与真实场景中均表现优异:在各类生成/来自真实数据集的狭窄平行泊车和垂直泊车场景中规划成功率超过97%,显著优于传统方法。此外,为了应对神经网络策略安全性问题,本文设计了一种动作掩码方法,通过计算和编码碰撞约束,显著减少训练中的无效探索,并确保规划路径的安全性。对于泊车任务来说,除却算法本身的设计,搭建合理的测试流程,证明算法的有效性是我们遇到的另一问题。大家好久不见,这里是白鹡鸰!
2025-04-22 07:30:51
982
转载 2025入行自动驾驶,应该关注哪些技术方向?
辅导老师介绍:毕业时获得华为天才少年,在顶级AI会议如CVPR、ICCV、ECCV、NIPS等发表论文30余篇,引用量6000+。去年的成果还算不错,几个同学中了CVPR和ICRA等会议,今年和老师们沟通过后,准备继续辅导几名同学冲下顶会,感兴趣的同学可以咨询,辅导方向如下。辅导老师2介绍:在CVPR、ICCV、ICML、TPAMI、AAAI、ECCV上发表论文多篇;辅导老师介绍:国内TOP2博士,ECCV、CVPR发表论文多篇,多个主流感知方案的贡献者;端到端自动驾驶、OCC、BEV、世界模型方向;
2025-04-21 14:30:55
147
转载 协同感知数据集最新综述!从车路协同到多模态融合~
本论文总结了现有的协同感知数据集,涵盖了不同的协作范式、传感器配置、数据源和应用场景,为研究人员提供了系统的参考,旨在推动协同感知技术的进一步研究与发展。:通过多维度的对比分析,突出高影响力的数据集,并探讨了协同感知数据集面临的主要挑战及未来发展方向,特别是在数据规模、领域适应性和标准化方面。通过这篇综述,我们希望为协同感知数据集的设计、建设和评估提供有价值的指导,推动自动驾驶技术的进一步发展,提升自动驾驶系统的安全性和可靠性。:随着多方数据共享,如何保护数据隐私和安全,避免恶意攻击,成为未来研究的重点。
2025-04-21 07:31:15
161
转载 Foundation Agents最新综述!具身智能未来路在何方?
此研究汇聚了来自 MetaGPT、Montréal & Mila 人工智能研究所、南洋理工大学、美国阿贡国家实验室、悉尼大学、宾夕法尼亚州立大学、微软亚洲研究院、伊利诺伊大学厄巴纳 - 香槟分校、香港科技大学、南加州大学、耶鲁大学、斯坦福大学、佐治亚大学、俄亥俄州立大学、阿卜杜拉国王科技大学、杜克大学、香港理工大学、谷歌 DeepMind 以及 加拿大高等研究院(CIFAR)等众多研究者的集体智慧与前瞻思考。而随着智能体数量的增加,科学的规模化方式也将是未来多智能体系统的重要议题。
2025-04-21 07:31:15
246
转载 LLaMA Factory 实战—单卡 3 小时训练你的专属大模型!
开源双语基座模型,该模型于 2023 年 11 月发布,拥有约 60 亿参数,通过在 3T 多语言语料上的预训练,取得了同等规模下优异的中英文 Benchmark 效果,且允许免费商用。是当今 LLM(大模型)应用的热门话题[1],通过任务分解(task planning)、工具调用(tool using)和多智能体协作(multi-agent cooperation)等途径,LLM Agent 有望突破传统语言模型能力界限,体现出更强的智能水平。通过调用外部工具,LLM 能够获取到。
2025-04-21 07:31:15
108
转载 自动驾驶转具身智能需要的硬件平台有哪些?
星球内部的成员来自国内外知名高校实验室、具身相关机器人头部公司,其中高校和科研机构包括但不限于:斯坦福大学、加州大学、清华大学、西湖大学、上海交大、上海人工智能实验室、港科大、港大、南洋理工、新加坡国立、ETH、南京大学等;公司包括但不限于:智元机器人、有鹿机器人、云深处、优必选、傅里叶机器人、开普勒机器人、小米、星海图、银河通用、星尘智能、逐际动力等。针对具身感知、触觉感知、导航、问答、大模型、视觉语言模型、端到端、机械臂抓取、控制规划多个领域的开源数据集进行了汇总,再也不用担心找不到可用的数据集了。
2025-04-20 12:00:00
218
转载 自动驾驶的这些硬件和方向还有搞头!
大模型、具身智能、VLA、自动驾驶端到端、自动驾驶感知、模型部署、C++、规划控制与轨迹预测、自动驾驶仿真、3DGS、产品经理、Diffusion、视觉语言导航、多传感器融合、多传感器标定等近50门课程。原价36999元,现在支付定金1000元抵扣3000,由于订单已经启动,优先锁定的安排组装发货。自动驾驶之心团队推出的教研一体轻量级解决方案,支持感知、建图、定位、融合、导航、规划等多个功能平台,转向方式为差速变向。5门以上享受7.5折,10门以上享受6.5折,50门以上享受6折优惠。
2025-04-20 10:04:34
137
转载 推理其实无需思考?伯克利最新研究:跳过思考过程会更快、更准确~
值得注意的是,即使与完整的 Thinking 方法(不采用强制预算的 Thinking 方法)相比,NoThinking 方法在将延迟降低到原来的九分之一的同时,还实现了更高的单样本准确率(pass@1)得分(55.79 比 54.1)。随着 k 值的增加,NoThinking 方法在多样本准确率(pass@k)方面令人惊喜的表现可以通过并行 scaling 得到进一步利用,从而在相似甚至显著更低的延迟(最多可降低至原来的九分之一)情况下,提升单样本准确率(pass@1)的结果。
2025-04-20 10:04:34
216
转载 越过生死线,小鹏要赚钱养家了
基模研发是小鹏汽车“AI化”转型的重要一步,不过,即便来到“大模型时代”,过去“规则时代”的领先经验仍在发挥作用。刘博士介绍,小鹏的世界模型是一种实时建模和反馈系统,能够基于动作信号模拟出真实环境状态,渲染场景,并生成场景内其他智能体(也即交通参与者)的响应,从而构建一个闭环的反馈网络,帮助基座模型不断进化,逐渐突破过去“模仿学习”的天花板。“云端模型工厂”采用强化学习、模型蒸馏的技术路线,能够高效生产“小身材、大智商”的端侧模型,甚至为不同需求的汽车定制不同的“大脑”,让“千人千面”的模型研发成为可能。
2025-04-20 10:04:34
163
转载 自动驾驶之心五一课程/知识星球/论文辅导/硬件优惠来啦!
大模型、具身智能、VLA、自动驾驶端到端、自动驾驶感知、模型部署、C++、规划控制与轨迹预测、自动驾驶仿真、3DGS、产品经理、Diffusion、视觉语言导航、多传感器融合、多传感器标定等近50门课程。原价36999元,现在支付定金1000元抵扣3000,由于订单已经启动,优先锁定的安排组装发货。自动驾驶之心团队推出的教研一体轻量级解决方案,支持感知、建图、定位、融合、导航、规划等多个功能平台,转向方式为差速变向。5门以上享受7.5折,10门以上享受6.5折,50门以上享受6折优惠。
2025-04-19 10:26:53
159
转载 期待您的加入!端到端VLA/扩散模型/世界模型/联合预测大佬招募~
自动驾驶之心是国内首个面向自动驾驶与具身智能领域的自媒体平台,吸引了近300+自动驾驶公司与国内外知名高校的关注。诚邀您和自动驾驶之心一起在科研辅导、课程开发、比赛指导等多个方向展开合作,自动驾驶之心将提供业内领先的待遇和报酬。欢迎咨询微信wenyirumo,也可扫码直接添加,备注:自动驾驶之心合作咨询。背景要求:工业界3年以上经验,学术界全球top200高校博士、博后。端到端自动驾驶、3D目标检测、BEV感知、在线高精地图等相关方向。数据闭环、扩散模型、联合预测、大语。言模型、世界模型、SLAM、
2025-04-19 09:45:16
136
转载 有没有LoRA更好的大模型微调方法?
然后,在每次 step 更新时,根据全局的重要性得分,选择前 20 个最重要的 rank 来进行更新,而不更新剩下的重要性较低的部分。Lora 效果能好是建立在以下的假设上, 在预训练阶段,模型需要处理多种复杂的任务和数据,因此其权重矩阵通常是高秩的,具有较大的表达能力,以适应各种不同的任务。然而,直觉告诉我们,模型中的某些矩阵比其他的更为重要,应该分配更多的参数来进行调整,而有些矩阵则相对不重要,不需要过多修改(回想 BERT 时代的经验,我们认为靠近输入层的权重主要学习语法和词法结构,微调时变化较小;
2025-04-19 00:01:21
170
转载 智驾或将进入『强监管』时代...
星友们也都是卧虎藏龙,主要来自地平线、蔚来、小鹏、理想汽车、AI Lab、商汤科技、旷视科技、百度、阿里、网易、Momenta、Intel、Nvidia、赢彻科技、图森未来、智加科技、AutoX、大疆、上汽、集度、斑马、华为等业界知名公司,以及苏黎世理工、卡耐基梅隆大学、普渡大学、东京大学、香港中文大学、香港科技大学、香港大学、清华大学、上海交大、复旦大学、浙江大学、中科大、南京大学、东南大学、同济大学、上海科技大学、哈工大等国内外知名高校;这么多的领域问题,需要行业最专业的回答。
2025-04-19 00:01:21
226
转载 BEVDiffLoc:基于BEV的端到端LiDAR定位新框架!
作者的方法在牛津和 NCLT 数据集上都展现出优越的定位鲁棒性,这得益于引入了 BEV 表征和特征提取模块,使得网络可以直接处理视角观测的大幅变化,从而显著降低 NCLT 上的定位难度。牛津数据集上的实验结果。如图2所示,作者的方法首先处理输入数据,将点云投影到BEV图像中,然后将这些BEV图像拼接成地图,并通过从随机位置采样生成新的BEV图像来增强输入数据的多样性,详情见第MI-A节。与存储像素中点的最大高度的方法相比,这种方法可以减少传感器姿态对BEV图像的影响,并增强其对视角变化的鲁棒性[26]。
2025-04-19 00:01:21
225
转载 领域论文 | 自动驾驶Sparse(稀疏网络)系列论文总结
论文:https://openaccess.thecvf.com/content_CVPR_2020/papers/Yu_Fast-MVSNet_Sparse-to-Dense_Multi-View_Stereo_With_Learned_Propagation_and_Gauss-Newton_Refinement_CVPR_2020_paper.pdf。
2025-04-18 07:32:22
219
原创 清华最新Driving-RAG!精准场景搜索让自动驾驶决策又快又准~
值得注意的是,尽管我们的DrivingRAG框架是为解决基于RAG的自动驾驶中的挑战而设计的,但它本质上是一个通用的解决方案,可以应用于涉及RAG或数据库系统的各种任务。通过利用训练场景集中的距离标签,RGCN 和 Transformer 模型的理解和拟合能力,使我们能够提取更丰富的特征,这些特征既能解释场景的语义关系,又能反映场景的时空演变,最终提升嵌入效果。首先,如果没有RGCN的图解析或图恢复任务的帮助,网络对场景图的理解会变弱,这体现在 IOU 的急剧下降上,同时也影响了场景距离的学习。
2025-04-18 07:32:22
788
转载 2025年自动驾驶还有哪些技术方向值得探索?
辅导老师介绍:毕业时获得华为天才少年,在顶级AI会议如CVPR、ICCV、ECCV、NIPS等发表论文30余篇,引用量6000+。去年的成果还算不错,几个同学中了CVPR和ICRA等会议,今年和老师们沟通过后,准备继续辅导几名同学冲下顶会,感兴趣的同学可以咨询,辅导方向如下。辅导老师2介绍:在CVPR、ICCV、ICML、TPAMI、AAAI、ECCV上发表论文多篇;辅导老师介绍:国内TOP2博士,ECCV、CVPR发表论文多篇,多个主流感知方案的贡献者;端到端自动驾驶、OCC、BEV、世界模型方向;
2025-04-18 07:32:22
189
转载 决定了!还是上岸自动驾驶~
这里也说下为什么说秋招简历投递的时间在八月中下旬(满级选手除外),首先对于大多数公司的秋招来说,晚几个星期投不会有太大的影响,公司最终发放offer是统一面试、统一处理,过早和满级选手同台竞争反而可能会被打入冷宫。广义上的可转正暑期实习从2月底会持续到10月底,即使到了秋招的时候,也都同步会有可转正实习的hc,因为大厂目前更倾向于招聘实习转正的人,第一是更有实际的工作基础,第二当然也是更好压价,实习转正的薪酬一般都不会开的太高。:一份有亮点的简历,往往一下子能够吸引面试官和HR,这样少了很多后期的工作。
2025-04-17 18:38:16
164
转载 肝了几个月,手搓实现一辆自动驾驶小车~
1年内支持售后(非人为损坏),邮费自付。保修期内因操作失误/修改代码等个人原因导致损坏的,我司提供免费维修。自动驾驶之心团队推出的教研一体轻量级解决方案,支持感知、定位、融合、导航、规划等多个功能平台,阿克曼底盘。原价34999元,现在支付定金1000元抵扣2000,由于订单已经启动,优先锁定的安排组装发货。我们测试了室内、室外、地库等场景下感知、定位、融合、导航规划等功能;以下为产品说明书部分内容,涉及硬件、传感器参数、软件、维修等内容。支持二次开发+二次改装!1.5m/s(最大可到2m/s)
2025-04-17 11:00:00
152
转载 为什么DeepSeek-R1之后的大模型都开始做思维链?
当然我们现在知道了,OpenAI 的 o1 系列也是这条路线训练出来的——这件事很难,但真的能成,而且效果非常好。这个现象在最初是让很多人感到相当震撼的,和 In-context learning (大模型有能力看懂任务指示和示例,在不进行训练的情况下,直接学会在训练时没遇到过的新任务)一道成为大模型智能涌现的标志之一。几乎所有的教科书、教辅书都只会把正确过程给印到答案上,而不会把错误的过程给印上去,但很多时候我们希望模型在想错的时候能稍微多想一步、反思一下,至少能纠正那些看起来明显不对的错误。
2025-04-17 07:30:29
194
转载 还有坑!自动驾驶还有哪些值得卷论文的方向?
辅导老师介绍:毕业时获得华为天才少年,在顶级AI会议如CVPR、ICCV、ECCV、NIPS等发表论文30余篇,引用量6000+。去年的成果还算不错,几个同学中了CVPR和ICRA等会议,今年和老师们沟通过后,准备继续辅导几名同学冲下顶会,感兴趣的同学可以咨询,辅导方向如下。辅导老师2介绍:在CVPR、ICCV、ICML、TPAMI、AAAI、ECCV上发表论文多篇;辅导老师介绍:国内TOP2博士,ECCV、CVPR发表论文多篇,多个主流感知方案的贡献者;端到端自动驾驶、OCC、BEV、世界模型方向;
2025-04-16 11:05:16
186
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人