作者 | EyeSight1019 编辑 | 自动驾驶之心
原文链接:https://zhuanlan.zhihu.com/p/1894535516650730953
点击下方卡片,关注“自动驾驶之心”公众号
>>点击进入→自动驾驶之心『3D目标检测』技术交流群
本文只做学术分享,如有侵权,联系删文
前言
本文总结了自动驾驶中的Sparse(稀疏网络)系列论文,包含:Anchor/锚框、Query/查询、Token/词元、Convolution/卷积、CNN/卷积网络、Attention/注意力、Transformer/变换器、LSTM/长短期记忆网络、GAN/生成对抗网络、Mixed/混合网络、Det/检测、Seg/分割、Depth/深度估计、Tracking/跟踪、Lane/车道线、BEV/鸟瞰图、Occupancy/占用、SCC/场景语义补全、Stereo/双目、Lidar/激光雷达、Radar/毫米波雷达、4DRadar/4D毫米波雷达、Fusion/融合、Odometry/里程计、PnC/规控、E2E/端到端、GS/高斯泼溅、DM/扩散模型、NeRF/神经网络辐射场、MoE/混合专家模型等30个领域,总计115篇论文,可作为科研、开发的参考资料。
1.SparseAnchor/锚框
ASAG
题目:ASAG: Building Strong One-Decoder-Layer Sparse Detectors via Adaptive Sparse Anchor Generation
名称:SAG:通过自适应稀疏锚生成构建强大的单解码器层稀疏检测器
论文:https://openaccess.thecvf.com/content/ICCV2023/papers/Fu_ASAG_Building_Strong_One-Decoder-Layer_Sparse_Detectors_via_Adaptive_Sparse_Anchor_ICCV_2023_paper.pdf
代码:https://github.com/iSEE-Laboratory/ASAG
单位:中山大学、鹏程Lab
出版:ICCV 2023
SAOD
题目:Sparse Anchor-Based Object Detection in Crowded Scenes
名称:基于稀疏锚点的人群场景目标检测
论文:https://dl.acm.org/doi/10.1145/3700523.3700525
代码:
单位:江苏科技大学
出版:AI2A 2024
2.SparseQuery/查询
SparseSemi-DETR
题目:Sparse Semi-DETR: Sparse Learnable Queries for Semi-Supervised Object Detection
名称:稀疏半DETR:用于半监督目标检测的稀疏可学习查询
论文:https://arxiv.org/abs/2404.01819
代码:
单位:DFKI、RPTU、RPTU
出版:CVPR 2024
StreamPETR
题目:Exploring Object-Centric Temporal Modeling for Efficient Multi-View 3D Object Detection
名称:探索以对象为中心的时间建模以实现高效的多视图 3D 对象检测
论文:https://arxiv.org/abs/2303.11926
代码:https://github.com/exiawsh/StreamPETR
单位:旷视
出版:Arxiv 2023
3.SparseToken/词元
SparsePO
题目:SparsePO: Controlling Preference Alignment of LLMs via Sparse Token Masks
名称:SparsePO:通过稀疏标记掩码控制 LLM 的偏好对齐
论文:https://arxiv.org/abs/2410.05102
代码:
单位:华为NoahsArkLab、伦敦大学学院
出版:Arxiv 2024
SpAtten
题目:SpAtten: Efficient Sparse Attention Architecture with Cascade Token and Head Pruning
名称:SpAtten:具有级联标记和头部修剪的高效稀疏注意力架构
论文:https://ieeexplore.ieee.org/document/9407232
代码:
单位:MIT
出版:HPCA 2021
TransSTS
题目:Transformers Provably Learn Sparse Token Selection While Fully-Connected Nets Cannot
名称:Transformer 可以证明学习稀疏 token 选择,而全连接网络则不能
论文:https://arxiv.org/abs/2406.06893
代码:
单位:普林斯顿大学、哥伦比亚大学
出版:Arxiv 2024
4.SparseConvolution/卷积
SparseConv
题目:Sparse Convolutional Neural Networks
名称:稀疏卷积网络
论文:https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Liu_Sparse_Convolutional_Neural_2015_CVPR_paper.pdf
代码:
单位:中佛罗里达大学、亚马逊
出版:CVPR 2015
3DSS-SparseConv
题目:3D Semantic Segmentation with Submanifold Sparse Convolutional Networks
名称:基于子流形稀疏卷积网络的三维语义分割
论文:https://arxiv.org/pdf/1711.10275
代码:
单位:Facebook、牛津大学
出版:
SECOND
题目:SECOND:Sparsely Embedded Convolutional Detection
名称:SECOND:稀疏嵌入卷积检测
论文:https://www.mdpi.com/1424-8220/18/10/3337
代码:
单位:重庆大学、TrunkTech
出版:MDPI 2018
5.SparseCNN/卷积网络
SparseRCNN
题目:Sparse R-CNN: End-to-End Object Detection with Learnable Proposals
名称:稀疏 R-CNN:具有可学习提议的端到端对象检测
论文:https://arxiv.org/abs/2011.12450
代码:https://github.com/PeizeSun/SparseR-CNN
单位:香港大学、同济大学、字节跳动、UCBerkeley
出版:Arxiv 2020
DynamicSparseRCNN
题目:Dynamic Sparse R-CNN
名称:动态稀疏R-CNN
论文:https://arxiv.org/abs/2205.02101
代码:
单位:AMD
出版:CVPR 2022
SparseMLP
题目:Sparse MLP for Image Recognition: Is Self-Attention Really Necessary?
名称:用于图像识别的稀疏 MLP:自注意力真的有必要吗?
论文:https://arxiv.org/abs/2109.05422
代码:https://github.com/microsoft/SPACH
单位:微软中国、中科大
出版:Arxiv 2021
SparseICP
题目:Fast and Robust Iterative Closest Point
名称:快速且稳健的迭代最近点
论文:https://arxiv.org/abs/2007.07627
代码:https://github.com/OpenGP/sparseicp
单位:中科大、卡迪夫大学
出版:Arxiv 2020
SparseNet
题目:SparseNet: A Sparse DenseNet for Image Classification
名称:SparseNet:用于图像分类的稀疏密集网络
论文:https://arxiv.org/abs/1804.05340
代码:
单位:中山大学
出版:Arxiv 2018
SVQ
题目:SVQ: Sparse Vector Quantization for Spatiotemporal Forecasting
名称:SVQ:用于时空预测的稀疏矢量量化
论文:https://arxiv.org/abs/2312.03406
代码:https://anonymous.4open.science/r/SVQ-Forecasting
单位:阿里巴巴
出版:Arxiv 2023
SparseDFF
题目:SparseDFF: Sparse-View Feature Distillation for One-Shot Dexterous Manipulation
名称:SparseDFF:用于一次性灵巧操作的稀疏视图特征蒸馏
论文:https://arxiv.org/abs/2310.16838
代码:https://github.com/helloqxwang/SparseDFF
单位:北大、斯坦福
出版:Arxiv 2023
SENDD
题目:SENDD: Sparse Efficient Neural Depth and Deformation for Tissue Tracking
名称:SENDD:用于组织追踪的稀疏高效神经深度和变形
论文:https://arxiv.org/abs/2305.06477
代码:
单位:不列颠哥伦比亚大学
出版:Arxiv 2023
6.SparseAttention/注意力
SparseAttention
题目:Sparse Attention with Linear Units
名称:具有线性单元的稀疏注意力机制
论文:https://arxiv.org/abs/2104.07012
代码:https://github.com/bzhangGo/zero
单位:爱丁堡大学、阿姆斯特丹大学、苏黎世大学
出版:EMNLP 2021
NSA
题目:Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention
名称:原生稀疏注意力:硬件对齐且原生可训练的稀疏注意力
论文:https://arxiv.org/abs/2502.11089
代码:
单位:DeepSeek-AI、北京大学
出版:Arxiv 2025
XAttention
题目:XAttention: Block Sparse Attention with Antidiagonal Scoring
名称:XAttention:利用反对角线评分来阻止稀疏注意力
论文:https://arxiv.org/abs/2503.16428
代码:https://github.com/mit-han-lab/x-attention
单位:清华、上交、NVIDIA
出版:Arxiv 2025
SparseTransformer-ID
题目:Learning A Sparse Transformer Network for Effective Image Deraining
名称:学习稀疏变换网络实现有效的图像去噪
论文:https://openaccess.thecvf.com/content/CVPR2023/papers/Chen_Learning_a_Sparse_Transformer_Network_for_Effective_Image_Deraining_CVPR_2023_paper.pdf
代码:
单位:南京理工大学、中国电子科技
出版:CVPR 2023
DSFA
题目:Fast Attention Over Long Sequences With Dynamic Sparse Flash Attention
名称:利用动态稀疏闪光注意力机制快速关注长序列
论文:https://openreview.net/forum?id=UINHuKeWUa
代码:
单位:
出版:OV 2023
7.SparseTransformer/变换器
SparseTransformer
题目:Generating Long Sequences with Sparse Transformers
名称:使用稀疏Transformer生成长序列
论文:https://arxiv.org/abs/1904.10509
代码:
单位:OpenAI
出版:Arxiv
DynamicViT
题目:DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification
名称:DynamicViT:具有动态令牌稀疏化的高效视觉Transformer
论文:https://arxiv.org/abs/2106.02034
代码:https://github.com/raoyongming/DynamicViT
单位:清华、UCLA、华盛顿大学
出版:Arxiv 2021
Sparse-VQTransformer
题目:Sparse-VQ Transformer: An FFN-Free Framework with Vector Quantization for Enhanced Time Series Forecasting
名称:稀疏 VQ 变换器:一种用于增强时间序列预测的具有矢量量化的无 FFN 框架
论文:https://arxiv.org/abs/2402.05830
代码:
单位:阿里巴巴
出版:Arxiv 2024
SparseBERT
题目:Sparse*BERT: Sparse Models Generalize To New tasks and Domains
名称:Sparse* BERT:稀疏模型推广到新任务和领域
论文:https://arxiv.org/abs/2205.12452
代码:
单位:伊利诺伊大学厄巴纳-香槟分校
出版:ICML 2022
SparseDETR
题目:Sparse DETR: Efficient End-to-End Object Detection with Learnable Sparsity
名称:稀疏 DETR:具有可学习稀疏性的高效端到端对象检测
论文:https://arxiv.org/abs/2111.14330
代码:https://github.com/kakaobrain/sparse-detr
单位:KakaoBrain、Lunit
出版:ICLR 2022
SparseSwin
题目:SparseSwin: Swin Transformer with Sparse Transformer Block
名称:SparseSwin:带有稀疏变换器块的 Swin Transformer
论文:https://arxiv.org/abs/2309.05224
代码:
单位:Brawijaya大学
出版:Arxiv 2023
Sparsifiner
题目:Sparsifiner: Learning Sparse Instance-Dependent Attention for Efficient Vision Transformers
名称:Sparsifiner:学习稀疏实例相关注意力以实现高效的视觉Transformer
论文:https://arxiv.org/abs/2303.13755
代码:
单位:多伦多大学、圭尔夫大学
出版:CVPR 2023
SparseFormer
题目:SparseFormer: Sparse Visual Recognition via Limited Latent Tokens
名称:SparseFormer:通过有限潜在标记实现稀疏视觉识别
论文:https://arxiv.org/abs/2304.03768
代码:https://github.com/showlab/sparseformer
单位:国立新加坡大学、腾讯AILab、南京大学
出版:Arxiv 2023
8.SparseLSTM/长短期记忆网络
SparseLSTM
题目:Intrinsically Sparse Long Short-Term Memory Networks
名称:固有稀疏长短期记忆网络
论文:https://arxiv.org/abs/1901.09208
代码:
单位:埃因霍温理工大学
出版:Arxiv 2019
9.SparseGAN/生成对抗网络
SparseGAN
题目:SparseGAN: Sparse Generative Adversarial Network for Text Generation
名称:SparseGAN:用于文本生成的稀疏生成对抗网络
论文:https://arxiv.org/abs/2103.11578
代码:
单位:复旦大学
出版:aRXIV 2021
10.SparseMixed/混合网络
SCTN
题目:SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation
名称:SCTN:用于场景流估计的稀疏卷积Transformer网络
论文:https://arxiv.org/abs/2105.04447
代码:
单位:KAUST
出版:AAAI 2022
SparseMixers
题目:Sparse Mixers: Combining MoE and Mixing to build a more efficient BERT
名称:稀疏混合器:结合 MoE 与混合来构建更高效的 BERT
论文:https://arxiv.org/abs/2205.12399
代码:
单位:Google
出版:Arxiv 2022
11.SparseDet/检测
FSDv2
题目:FSD V2: Improving Fully Sparse 3D Object Detection with Virtual Voxels
名称:FSD V2:利用虚拟体素改进完全稀疏 3D 物体检测
论文:https://arxiv.org/abs/2308.03755
代码:https://github.com/tusen-ai/SST
单位:CASIA、图森未来
出版:Arxiv 2023
SparseDet
题目:SparseDet: Improving Sparsely Annotated Object Detection with Pseudo-positive Mining
名称:SparseDet:利用伪正样本挖掘改进稀疏注释对象检测
论文:https://arxiv.org/abs/2201.04620
代码:https://www.cs.umd.edu/~sakshams/SparseDet
单位:马里兰大学、约翰斯·霍普金斯大学
出版:ICCV 2023
SparseDet
题目:SparseDet: Towards End-to-End 3D Object Detection
名称:SparseDet:面向端到端 3D 物体检测
论文:https://arxiv.org/abs/2206.00960
代码:北大、罗切斯特大学、华科
单位:
出版:Arxiv 2022
Sparse4D
题目:Sparse4D: Multi-view 3D Object Detection with Sparse Spatial-Temporal Fusion
名称:Sparse4D:具有稀疏时空融合的多视图 3D 物体检测
论文:https://arxiv.org/abs/2211.10581
代码:https://github.com/linxuewu/Sparse4D
单位:地平线
出版:Arxiv 2022
Sparse4Dv2
题目:Sparse4D v2: Recurrent Temporal Fusion with Sparse Model
名称:Sparse4D v2:与稀疏模型的循环时间融合
论文:https://arxiv.org/abs/2305.14018
代码:https://github.com/linxuewu/Sparse4D
单位:地平线
出版:Arxiv 2023
Sparse4Dv3
题目:Sparse4D v3: Advancing End-to-End 3D Detection and Tracking
名称:Sparse4D v3:推进端到端 3D 检测和跟踪
论文:https://arxiv.org/abs/2311.11722
代码:https://github.com/linxuewu/Sparse4D
单位:地平线
出版:Arxiv 2023
SAFDNet
题目:SAFDNet: A Simple and Effective Network for Fully Sparse 3D Object Detection
名称:SAFDNet:一种简单有效的全稀疏 3D 物体检测网络
论文:https://arxiv.org/abs/2403.05817
代码:https://github.com/zhanggang001/HEDNet
单位:清华、华科、北理工、北航
出版:CVPR 2024
Sparse-YOLO
题目:Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2
名称:Sparse-YOLO:YOLOv2 FPGA 加速器的硬件/软件协同设计
论文:https://ieeexplore.ieee.org/document/9122495
代码:
单位:北京交通大学
出版:IEEE 2020
MsSVT++
题目:MsSVT++: Mixed-scale Sparse Voxel Transformer with Center Voting for 3D Object Detection
名称:MsSVT++:用于 3D 物体检测的带中心投票的混合尺度稀疏体素变换器
论文:https://arxiv.org/abs/2401.11718
代码:
单位:北理工
出版:NIPS 2024
SDVRF
题目:SDVRF: Sparse-to-Dense Voxel Region Fusion for Multi-modal 3D Object Detection
名称:SDVRF:用于多模态 3D 物体检测的稀疏到密集体素区域融合
论文:https://arxiv.org/abs/2304.08304
代码:
单位:IEEE Member
出版:Arxiv 2023
SDF
题目:Sparse Dense Fusion for 3D Object Detection
名称:用于 3D 物体检测的稀疏密集融合
论文:https://arxiv.org/abs/2304.04179
代码:
单位:北航、上海AILab
出版:Arxiv 2023
SRCN3D
题目:SRCN3D: Sparse R-CNN 3D for Compact Convolutional Multi-View 3D Object Detection and Tracking
名称:SRCN3D:用于紧凑卷积多视图 3D 物体检测和跟踪的稀疏 R-CNN 3D
论文:https://arxiv.org/abs/2206.14451
代码:https://github.com/synsin0/SRCN3D
单位:清华
出版:CVPR 2023
VPFNet
题目:VPFNet: Improving 3D Object Detection with Virtual Point based LiDAR and Stereo Data Fusion
名称:VPFNet:利用基于虚拟点的激光雷达和立体数据融合改进3D目标检测
论文:https://arxiv.org/abs/2111.14382
代码:
单位:中科大
出版:Arxiv 2021
12.SparseSeg/分割
SparseInst
题目:Sparse Instance Activation for Real-Time Instance Segmentation
名称:用于实时实例分割的稀疏实例激活
论文:https://arxiv.org/abs/2203.12827
代码:https://github.com/hustvl/SparseInst
单位:华科、地平线、CASIA
出版:CVPR 2022
13.SparseDepth/深度估计
Sparse-to-Dense
题目:Sparse-to-Dense: Depth Prediction from Sparse Depth Samples and a Single Image
名称:稀疏到密集:从稀疏深度样本和单个图像进行深度预测
论文:https://arxiv.org/abs/1709.07492
代码:https://github.com/fangchangma/sparse-to-dense
单位:MIT
出版:ICRA 2018
AS2D
题目:Sparse Depth-Guided Attention for Accurate Depth Completion: A Stereo-Assisted Monitored Distillation Approach
名称:稀疏深度引导注意力实现精确深度补全:立体辅助监控蒸馏方法
论文:https://arxiv.org/abs/2303.15840
代码:
单位:港中文
出版:Arxiv 2023
SparseSPN
题目:Sparse SPN: Depth Completion from Sparse Keypoints
名称:稀疏 SPN:通过稀疏关键点完成深度
论文:https://arxiv.org/abs/2212.00987
代码:
单位:伊利诺伊大学厄巴纳-香槟分校
出版:Arxiv 2022
14.SparseTracking/跟踪
SparseTrack
题目:SparseTrack: Multi-Object Tracking by Performing Scene Decomposition based on Pseudo-Depth
名称:SparseTrack:基于伪深度执行场景分解的多目标跟踪
论文:https://arxiv.org/abs/2306.05238
代码:https://github.com/hustvl/SparseTrack
单位:华科
出版:Arxiv 2023
SparseTracking
题目:In Defense of Sparse Tracking: Circulant Sparse Tracker
名称:防御稀疏跟踪:循环稀疏跟踪器
论文:https://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_In_Defense_of_CVPR_2016_paper.pdf
代码:
单位:KAUST、CASIA
出版:CVPR 2016
SGT
题目:Detection Recovery in Online Multi-Object Tracking with Sparse Graph Tracker
名称:稀疏图跟踪器在线多目标跟踪中的检测恢复
论文:https://openaccess.thecvf.com/content/WACV2023/papers/Hyun_Detection_Recovery_in_Online_Multi-Object_Tracking_With_Sparse_Graph_Tracker_WACV_2023_paper.pdf
代码:
单位:港科大
出版:WACV 2023
SRT3D
题目:SRT3D: A Sparse Region-Based 3D Object Tracking Approach for the Real World
名称:SRT3D:一种基于稀疏区域的真实世界 3D 对象跟踪方法
论文:https://arxiv.org/abs/2110.12715
代码:
单位:TUM
出版:Arxiv 2021
15.SparseLane/车道线
SparseLaneformer
题目:Sparse Laneformer
名称:稀疏车道 Transformer
论文:https://arxiv.org/abs/2404.07821
代码:
单位:ADM AI
出版:Arxiv
SPG-3DLane
题目:Sparse Point Guided 3D Lane Detection
名称:稀疏点引导 3D 车道检测
论文:https://ieeexplore.ieee.org/document/10376563
代码:
单位:北京理工大学、元戎启行
出版:ICCV 2023
16.SparseBEV/鸟瞰图
SparseBEV
题目:SparseBEV: High-Performance Sparse 3D Object Detection from Multi-Camera Videos
名称:SparseBEV:从多摄像机视频中进行高性能稀疏 3D 物体检测
论文:https://arxiv.org/abs/2308.09244
代码:https://github.com/MCG-NJU/SparseBEV
单位:南京大学、上海AILab
出版:ICCV 2023
PointBeV
题目:PointBeV: A Sparse Approach to BeV Predictions
名称:PointBeV:一种稀疏的 BeV 预测方法
论文:https://arxiv.org/abs/2312.00703
代码:https://github.com/valeoai/PointBeV
单位:ValeoAI
出版:Arxiv
17.SparseOccupancy/占用
SparseOcc
题目:Fully Sparse 3D Occupancy Prediction
名称:完全稀疏 3D 占用预测
论文:https://arxiv.org/abs/2312.17118
代码:https://github.com/MCG-NJU/SparseOcc
单位:南京大学、上海AILab
出版:ECCV 2024
18.SparseSCC/场景语义补全
VoxFormer
题目:VoxFormer: Sparse Voxel Transformer for Camera-based 3D Semantic Scene Completion
名称:VoxFormer:基于相机的 3D 语义场景完成的稀疏体素Transformer
论文:https://arxiv.org/abs/2302.12251
代码:https://github.com/NVlabs/VoxFormer
单位:NYU、NVIDIA、ASU
出版:CVPR 2023
19.SparseStereo/双目
SCV-Stereo
题目:SCV-Stereo: Learning Stereo Matching from a Sparse Cost Volume
名称:SCV-Stereo:从低廉的成本中学习立体声匹配
论文:https://arxiv.org/abs/2107.08187
代码:https://sites.google.com/view/scv-stereo
单位:香港大学
出版:ICIP 2021
StereoMatch-SDP
题目:Stereo Matching with Cost Volume based Sparse Disparity Propagation
名称:基于成本体积的稀疏视差传播立体匹配
论文:https://arxiv.org/abs/2201.11937
代码:
单位:深圳技术大学
出版:Arxiv 2022
Fast-MVSNet
题目:Fast-MVSNet: Sparse-to-Dense Multi-View Stereo With Learned Propagation and Gauss-Newton Refinement
名称:快速MVSNet:具有学习传播和高斯-牛顿精化的稀疏到密集多视图立体
论文:https://openaccess.thecvf.com/content_CVPR_2020/papers/Yu_Fast-MVSNet_Sparse-to-Dense_Multi-View_Stereo_With_Learned_Propagation_and_Gauss-Newton_Refinement_CVPR_2020_paper.pdf
代码:
单位:上海科技大学
出版:CVPR 2020
SPLINE-Net
题目:SPLINE-Net: Sparse Photometric Stereo through Lighting Interpolation and Normal Estimation Networks
名称:SPLINE Net:通过光照插值和法线估计网络实现稀疏光度立体
论文:https://openaccess.thecvf.com/content_ICCV_2019/papers/Zheng_SPLINE-Net_Sparse_Photometric_Stereo_Through_Lighting_Interpolation_and_Normal_Estimation_ICCV_2019_paper.pdf
代码:
单位:南洋理工、清华、北大、鹏程Lab
出版:ICCV 2019
20.SparseLidar/激光雷达
SparsePointPillars
题目:Sparse PointPillars: Maintaining and Exploiting Input Sparsity to Improve Runtime on Embedded Systems
名称:稀疏点柱:维护和利用输入稀疏性来改善嵌入式系统的运行时间
论文:https://arxiv.org/abs/2106.06882
代码:https://github.com/kylevedder/SparsePointPillars
单位:宾夕法尼亚大学
出版:IROS 2022
SVQNet
题目:SVQNet: Sparse Voxel-Adjacent Query Network for 4D Spatio-Temporal LiDAR Semantic Segmentation
名称:SVQNet:用于 4D 时空 LiDAR 语义分割的稀疏体素相邻查询网络
论文:https://arxiv.org/abs/2308.13323
代码:
单位:清华、港科大、元戎
出版:ICCV2023
SpOctA
题目:SpOctA: A 3D Sparse Convolution Accelerator with Octree-Encoding-Based Map Search and Inherent Sparsity-Aware Processing
名称:SpOctA:具有基于八叉树编码的地图搜索和固有稀疏感知处理的 3D 稀疏卷积加速器
论文:https://arxiv.org/abs/2308.09249
代码:
单位:上海交大、同济大学、辉羲智能
出版:ICCAD 2023
SSC3OD
题目:SSC3OD: Sparsely Supervised Collaborative 3D Object Detection from LiDAR Point Clouds
名称:SSC3OD:基于 LiDAR 点云的稀疏监督协作 3D 物体检测
论文:https://arxiv.org/abs/2307.00717
代码:
单位:北京交通大学
出版:SMC 2023
SPARSE-R
题目:SPARSE-R: A point-cloud tracer with random forcing
名称:SPARSE-R:具有随机强制的点云追踪器
论文:https://arxiv.org/abs/2305.15610
代码:
单位:圣地亚哥州立大学
出版:Arxiv 2023
S3Net
题目:S3Net: 3D LiDAR Sparse Semantic Segmentation Network
名称:S3Net:3D LiDAR 稀疏语义分割网络
论文:https://arxiv.org/abs/2103.08745
代码:
单位:华为NoahsArkLab
出版:Arxiv 2021
SPADE
题目:SPADE: Sparse Pillar-based 3D Object Detection Accelerator for Autonomous Driving
名称:SPADE:基于稀疏支柱的自动驾驶3D目标检测加速器
论文:https://arxiv.org/abs/2305.07522
代码:
单位:汉阳大学、UCSD
出版:Arxiv 2023
SVRASTER
题目:Sparse Voxels Rasterization: Real-time High-fidelity Radiance Field Rendering
名称:稀疏体素光栅化:实时高保真辐射场渲染
论文:https://arxiv.org/abs/2412.04459
代码:https://github.com/NVlabs/svraster
DSVT
题目:DSVT: Dynamic Sparse Voxel Transformer with Rotated Sets
名称:DSVT:具有旋转集的动态稀疏体素Transformer
论文:https://arxiv.org/abs/2301.06051
代码:
单位:北大、萨尔大学、华为、之江Lab
出版:CVPR 2023
SST
题目:Embracing Single Stride 3D Object Detector with Sparse Transformer
名称:使用稀疏变换器实现单步 3D 物体检测器
论文:https://arxiv.org/abs/2112.06375
代码:https://github.com/tusen-ai/SST
单位:中科院自动化所、UIUC、CMU、清华、图森未来
出版:Arxiv 2021
21.SparseRadar/毫米波雷达
SparseRadNet
题目:SparseRadNet: Sparse Perception Neural Network on Subsampled Radar Data
名称:SparseRadNet:基于子采样雷达数据的稀疏感知神经网络
论文:https://arxiv.org/abs/2406.10600
代码:
单位:伍珀塔尔大学
出版:Arxiv 2024
RadarInstanceTransformer
题目:Radar Instance Transformer: Reliable Moving Instance Segmentation in Sparse Radar Point Clouds
名称:雷达实例Transformer:稀疏雷达点云中可靠的移动实例分割
论文:https://arxiv.org/abs/2309.16435
代码:
单位:波恩大学
出版:Arxiv 2023
SKPP-DPVCN
题目:Exploiting Sparsity in Automotive Radar Object Detection Networks
名称:利用汽车雷达目标检测网络中的稀疏性
论文:https://arxiv.org/abs/2308.07748
代码:
单位:BOSCH
出版:Arxiv 2023
22.Sparse4DRadar/4D毫米波雷达
SAOCS-4DRadar
题目:4D Automotive Radar Exploiting Sparse Array Optimization and Compressive Sensing
名称:利用稀疏阵列优化和压缩感知的 4D 汽车雷达
论文:https://ieeexplore.ieee.org/document/10476872
代码:
单位:阿拉巴马大学、斯巴达雷达
出版:IEEE 2023
K-Radar
题目:K-Radar: 4D Radar Object Detection for Autonomous Driving in Various Weather Conditions
名称:K-Radar:用于各种天气条件下自动驾驶的4D雷达目标检测
论文 :https://papers.neurips.cc/paper_files/paper/2022/file/185fdf627eaae2abab36205dcd19b817-Paper-Datasets_and_Benchmarks.pdf
代码:
单位:CCS、RP、KAIST
出版:NeurIPS 2022
23.SparseFusion/融合
SparseFusion
题目:SparseFusion: Fusing Multi-Modal Sparse Representations for Multi-Sensor 3D Object Detection
名称:SparseFusion:融合多模态稀疏表示以实现多传感器 3D 物体检测
论文:https://arxiv.org/abs/2304.14340
代码:https://github.com/yichen928/SparseFusion
单位:UC Berkeley、Google、加州理工学院
出版:Arxiv 2023
SparseFusion
题目:SparseFusion: Efficient Sparse Multi-Modal Fusion Framework for Long-Range 3D Perception
名称:SparseFusion:用于远程 3D 感知的高效稀疏多模态融合框架
论文:https://arxiv.org/abs/2403.10036
代码:
单位:中科大、图森未来
出版:Arxiv 2024
FullySparseFusion
题目:Fully Sparse Fusion for 3D Object Detection
名称:用于 3D 物体检测的完全稀疏融合
论文:https://arxiv.org/abs/2304.12310
代码:https://github.com/BraveGroup/FullySparseFusion
单位:中国科学院
出版:TPMAI 2024
SpaRC
题目:SpaRC: Sparse Radar-Camera Fusion for 3D Object Detection
名称:SpaRC:用于 3D 物体检测的稀疏雷达-摄像机融合
论文:https://arxiv.org/abs/2309.16435
代码:https://github.com/phi-wol/sparc
单位:波恩大学
出版:Arxiv 2023
SLS-Fusion
题目:Sparse LiDAR and Stereo Fusion (SLS-Fusion) for Depth Estimationand 3D Object Detection
名称:用于深度估计和 3D 物体检测的稀疏激光雷达和立体融合 (SLS-Fusion)
论文:https://arxiv.org/abs/2103.03977
代码:
单位:图卢兹大学
出版:Arxiv 2021
SparseLIF
题目:SparseLIF: High-Performance Sparse LiDAR-Camera Fusion for 3D Object Detection
名称:SparseLIF:用于 3D 物体检测的高性能稀疏 LiDAR-相机融合
论文:https://arxiv.org/abs/2403.07284
代码:
单位:商汤、四川大学
出版:ECCV 2024
24.SparseOdometry/里程计
LDSO
题目:LDSO: Direct Sparse Odometry with Loop Closure
名称:LDSO:带回环闭合的直接稀疏里程计
论文:https://ieeexplore.ieee.org/document/8593376
代码:
单位:TUM
出版:IROS 2028
StereoDSO
题目:Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras
名称:立体DSO:基于立体相机的大规模直接稀疏视觉里程计
论文:https://arxiv.org/abs/1708.07878
代码:
单位:TUM
出版:ICCV 2017
DSO
题目:Direct Sparse Odometry
名称:直接稀疏里程计
论文:https://arxiv.org/abs/1607.02565
代码:
单位:TUM、Intel
出版:Arxiv 2016
EDSO
题目:Event-aided Direct Sparse Odometry
名称:事件辅助直接稀疏里程计
论文:https://arxiv.org/abs/2204.07640
代码:https://rpg.ifi.uzh.ch/eds
单位:苏黎世联邦理工学院
出版:Arxiv 2022
R-SDSO
题目:R-SDSO: Robust stereo direct sparse odometry
名称:R-SDSO:稳健的立体声直接稀疏里程计
论文:https://link.springer.com/article/10.1007/s00371-021-02278-0
代码:
单位:上海交大
出版:LK 2022
25.SparsePnC/规控
MS-Net
题目:MS-Net: A Multi-Path Sparse Model for Motion Prediction in Multi-Scenes
名称:MS-Net:一种用于多场景运动预测的多路径稀疏模型
论文:https://arxiv.org/abs/2403.00353
代码:
单位:同济大学
出版:RAL 2024
Sim-STD
题目:Learning to Simulate on Sparse Trajectory Data
名称:学习在稀疏轨迹数据上进行模拟
论文:https://arxiv.org/abs/2103.11845
代码:
单位:宾夕法尼亚州立大学、上海交大
出版:ECML-PKDD 2020
26.SparseE2E/端到端
SparseDrive
题目:SparseDrive: End-to-End Autonomous Driving via Sparse Scene Representation
名称:SparseDrive:通过稀疏场景表示实现端到端自动驾驶
论文:https://arxiv.org/abs/2405.19620
代码:https://github.com/swc-17/SparseDrive
单位:清华、地平线
出版:Arxiv 2024
SparseAD
题目:SparseAD: Sparse Query-Centric Paradigm for Efficient End-to-End Autonomous Driving
名称:SparseAD:以稀疏查询为中心的高效端到端自动驾驶范式
论文:https://arxiv.org/abs/2404.06892
代码:
单位:迈驰智行、中国科学院大学
出版:Arxiv 2024
27.SparseGS/高斯泼溅
SparseGS
题目:SparseGS: Real-Time 360° Sparse View Synthesis using Gaussian Splatting
名称:SparseGS:使用高斯分层的实时 360° 稀疏视图合成
论文:https://arxiv.org/abs/2312.00206
代码:https://github.com/ForMyCat/SparseGS
单位:UCA、USC
出版:3DV 2025
FreeSplatter
题目:FreeSplatter: Pose-free Gaussian Splatting for Sparse-view 3D Reconstruction
名称:FreeSplatter:用于稀疏视图三维重建的无姿态高斯溅射
论文:https://arxiv.org/abs/2412.09573
代码:https://github.com/TencentARC/FreeSplatter
单位:腾讯ARCLab、香港大学
出版:Arxiv 2024
28.SparseDM/扩散模型
SparseDM
题目:SparseDM: Toward Sparse Efficient Diffusion Models
名称:SparseDM:迈向稀疏高效扩散模型
论文:https://arxiv.org/abs/2404.10445
代码:
单位:清华大学、奥诺仪器
出版:aRXIV 2024
SparseDiffusionPolicy
题目:Sparse Diffusion Policy: A Sparse, Reusable, and Flexible Policy for Robot Learning
名称:稀疏扩散策略:一种稀疏、可重用且灵活的机器人学习策略
论文:https://arxiv.org/abs/2407.01531
代码:
单位:UCBerkeley、CMU
出版:CoRL 2024
MVDiffusion++
题目:MVDiffusion++: A Dense High-Resolution Multi-view Diffusion Model for Single or Sparse-View 3D Object Reconstruction
名称:MVDiffusion++:用于单视图或稀疏视图 3D 物体重建的密集高分辨率多视图扩散模型
论文:https://arxiv.org/abs/2402.12712
代码:https://mvdiffusion-plusplus.github.io/
单位:西蒙弗雷泽大学、Meta
出版:ECCV 2024
29.SparseNeRF/神经网络辐射场
SparseNeRF
题目:SparseNeRF: Distilling Depth Ranking for Few-shot Novel View Synthesis
名称:SparseNeRF:提炼深度排序以实现小样本新颖视图合成
论文:https://arxiv.org/abs/2303.16196
代码:https://github.com/Wanggcong/SparseNeRF
单位:南洋理工
出版:ICCV 2023
VRS-NeRF
题目:VRS-NeRF: Visual Relocalization with Sparse Neural Radiance Field
名称:VRS-NeRF:利用稀疏神经辐射场进行视觉重定位
论文:https://arxiv.org/abs/2404.09271
代码:https://github.com/feixue94/vrs-nerf
单位:剑桥、丰田
出版:Arxiv 2024
Sparse-DeRF
题目:Sparse-DeRF: Deblurred Neural Radiance Fields from Sparse View
名称:Sparse-DeRF:从稀疏视图中去除模糊的神经辐射场
论文:https://arxiv.org/abs/2407.06613
代码:
单位:延世大学
出版:Arxiv 2024
SparseSat-NeRF
题目:SparseSat-NeRF: Dense Depth Supervised Neural Radiance Fields for Sparse Satellite Images
名称:SparseSat-NeRF:针对稀疏卫星图像的密集深度监督神经辐射场
论文:https://arxiv.org/abs/2309.00277
代码:https://github.com/LulinZhang/SpS-NeRF
单位:CNRS、IGN-ENSG
出版:ISPRS 2024
Sp360
题目:Sp360: Sparse-view 360 Scene Reconstruction using Cascaded 2D Diffusion Priors
名称:Sp360:使用级联 2D 扩散先验进行稀疏视图 360 场景重建
论文:https://arxiv.org/abs/2405.16517
代码:
单位:萨兰大学
出版:Arxiv 2024
SPARF
题目:SPARF: Large-Scale Learning of 3D Sparse Radiance Fields from Few Input Images
名称:SPARF:从少量输入图像大规模学习 3D 稀疏辐射场
论文:https://arxiv.org/abs/2212.09100
代码:https://abdullahamdi.com/sparf/
单位:TUM、(KAUST
出版:Arxiv 2022
SparseNeuS
题目:SparseNeuS: Fast Generalizable Neural Surface Reconstruction from Sparse Views
名称:SparseNeuS:从稀疏视图快速通用神经表面重建
论文:https://arxiv.org/abs/2206.05737
代码:https://github.com/xxlong0/SparseNeuS
单位:香港大学、腾讯Game
出版:ECCV 2022
30.SparseMoE/混合专家模型
SEER-MoE
题目:SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts
名称:SEER-MoE:通过混合专家的正则化提高稀疏专家效率
论文:https://arxiv.org/abs/2404.05089
代码:
单位:斯坦福、Google、NVIDIA
出版:Arxiv 2024
SparseMoe-Dropout
题目:Sparse MoE as the New Dropout: Scaling Dense and Self-Slimmable Transformers
名称:稀疏MoE作为新的输出:缩放密集和自减薄变压器
论文:https://arxiv.org/abs/2303.01610
代码:https://github.com/VITA-Group/Random-MoE-as-Dropout
单位:得克萨斯大学奥斯汀分校
出版:Arxiv 2023
SoftMoE
题目:From Sparse to Soft Mixtures of Experts
名称:从稀疏到软混合的专家
论文:https://arxiv.org/abs/2308.00951
代码:
单位:Google DeepMind
出版:ICLR 2024
Lingual-SMoE
题目:Sparse MoE with Language Guided Routing for Multilingual Machine Translation
名称:面向多语言机器翻译的稀疏 MoE 与语言引导路由
论文:https://openreview.net/forum?id=ySS7hH1smL
代码:https://github.com/UNITES-Lab/Lingual-SMoE
单位:UNCC、港中文、UTA
出版:OV 2024
总结
自动驾驶之心
论文辅导来啦
知识星球交流社区
近4000人的交流社区,近300+自动驾驶公司与科研结构加入!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(大模型、端到端自动驾驶、世界模型、仿真闭环、3D检测、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型,更有行业动态和岗位发布!欢迎加入。
独家专业课程
端到端自动驾驶、大模型、VLA、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、CUDA与TensorRT模型部署、大模型与自动驾驶、NeRF、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频
学习官网:www.zdjszx.com