领域论文 | 自动驾驶Sparse(稀疏网络)系列论文总结

作者 | EyeSight1019 编辑 | 自动驾驶之心

 原文链接:https://zhuanlan.zhihu.com/p/1894535516650730953 

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心『3D目标检测』技术交流群

本文只做学术分享,如有侵权,联系删文

前言

本文总结了自动驾驶中的Sparse(稀疏网络)系列论文,包含:Anchor/锚框、Query/查询、Token/词元、Convolution/卷积、CNN/卷积网络、Attention/注意力、Transformer/变换器、LSTM/长短期记忆网络、GAN/生成对抗网络、Mixed/混合网络、Det/检测、Seg/分割、Depth/深度估计、Tracking/跟踪、Lane/车道线、BEV/鸟瞰图、Occupancy/占用、SCC/场景语义补全、Stereo/双目、Lidar/激光雷达、Radar/毫米波雷达、4DRadar/4D毫米波雷达、Fusion/融合、Odometry/里程计、PnC/规控、E2E/端到端、GS/高斯泼溅、DM/扩散模型、NeRF/神经网络辐射场、MoE/混合专家模型等30个领域,总计115篇论文,可作为科研、开发的参考资料。

1.SparseAnchor/锚框

ASAG

题目:ASAG: Building Strong One-Decoder-Layer Sparse Detectors via Adaptive Sparse Anchor Generation

名称:SAG:通过自适应稀疏锚生成构建强大的单解码器层稀疏检测器

论文:https://openaccess.thecvf.com/content/ICCV2023/papers/Fu_ASAG_Building_Strong_One-Decoder-Layer_Sparse_Detectors_via_Adaptive_Sparse_Anchor_ICCV_2023_paper.pdf

代码:https://github.com/iSEE-Laboratory/ASAG

单位:中山大学、鹏程Lab

出版:ICCV 2023

SAOD

题目:Sparse Anchor-Based Object Detection in Crowded Scenes

名称:基于稀疏锚点的人群场景目标检测

论文:https://dl.acm.org/doi/10.1145/3700523.3700525

代码:

单位:江苏科技大学

出版:AI2A 2024

2.SparseQuery/查询

SparseSemi-DETR

题目:Sparse Semi-DETR: Sparse Learnable Queries for Semi-Supervised Object Detection

名称:稀疏半DETR:用于半监督目标检测的稀疏可学习查询

论文:https://arxiv.org/abs/2404.01819

代码:

单位:DFKI、RPTU、RPTU

出版:CVPR 2024

StreamPETR

题目:Exploring Object-Centric Temporal Modeling for Efficient Multi-View 3D Object Detection

名称:探索以对象为中心的时间建模以实现高效的多视图 3D 对象检测

论文:https://arxiv.org/abs/2303.11926

代码:https://github.com/exiawsh/StreamPETR

单位:旷视

出版:Arxiv 2023

3.SparseToken/词元

SparsePO

题目:SparsePO: Controlling Preference Alignment of LLMs via Sparse Token Masks

名称:SparsePO:通过稀疏标记掩码控制 LLM 的偏好对齐

论文:https://arxiv.org/abs/2410.05102

代码:

单位:华为NoahsArkLab、伦敦大学学院

出版:Arxiv 2024

SpAtten

题目:SpAtten: Efficient Sparse Attention Architecture with Cascade Token and Head Pruning

名称:SpAtten:具有级联标记和头部修剪的高效稀疏注意力架构

论文:https://ieeexplore.ieee.org/document/9407232

代码:

单位:MIT

出版:HPCA 2021

TransSTS

题目:Transformers Provably Learn Sparse Token Selection While Fully-Connected Nets Cannot

名称:Transformer 可以证明学习稀疏 token 选择,而全连接网络则不能

论文:https://arxiv.org/abs/2406.06893

代码:

单位:普林斯顿大学、哥伦比亚大学

出版:Arxiv 2024

4.SparseConvolution/卷积

SparseConv

题目:Sparse Convolutional Neural Networks

名称:稀疏卷积网络

论文:https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Liu_Sparse_Convolutional_Neural_2015_CVPR_paper.pdf

代码:

单位:中佛罗里达大学、亚马逊

出版:CVPR 2015

3DSS-SparseConv

题目:3D Semantic Segmentation with Submanifold Sparse Convolutional Networks

名称:基于子流形稀疏卷积网络的三维语义分割

论文:https://arxiv.org/pdf/1711.10275

代码:

单位:Facebook、牛津大学

出版:

SECOND

题目:SECOND:Sparsely Embedded Convolutional Detection

名称:SECOND:稀疏嵌入卷积检测

论文:https://www.mdpi.com/1424-8220/18/10/3337

代码:

单位:重庆大学、TrunkTech

出版:MDPI 2018

5.SparseCNN/卷积网络

SparseRCNN

题目:Sparse R-CNN: End-to-End Object Detection with Learnable Proposals

名称:稀疏 R-CNN:具有可学习提议的端到端对象检测

论文:https://arxiv.org/abs/2011.12450

代码:https://github.com/PeizeSun/SparseR-CNN

单位:香港大学、同济大学、字节跳动、UCBerkeley

出版:Arxiv 2020

DynamicSparseRCNN

题目:Dynamic Sparse R-CNN

名称:动态稀疏R-CNN

论文:https://arxiv.org/abs/2205.02101

代码:

单位:AMD

出版:CVPR 2022

SparseMLP

题目:Sparse MLP for Image Recognition: Is Self-Attention Really Necessary?

名称:用于图像识别的稀疏 MLP:自注意力真的有必要吗?

论文:https://arxiv.org/abs/2109.05422

代码:https://github.com/microsoft/SPACH

单位:微软中国、中科大

出版:Arxiv 2021

SparseICP

题目:Fast and Robust Iterative Closest Point

名称:快速且稳健的迭代最近点

论文:https://arxiv.org/abs/2007.07627

代码:https://github.com/OpenGP/sparseicp

单位:中科大、卡迪夫大学

出版:Arxiv 2020

SparseNet

题目:SparseNet: A Sparse DenseNet for Image Classification

名称:SparseNet:用于图像分类的稀疏密集网络

论文:https://arxiv.org/abs/1804.05340

代码:

单位:中山大学

出版:Arxiv 2018

SVQ

题目:SVQ: Sparse Vector Quantization for Spatiotemporal Forecasting

名称:SVQ:用于时空预测的稀疏矢量量化

论文:https://arxiv.org/abs/2312.03406

代码:https://anonymous.4open.science/r/SVQ-Forecasting

单位:阿里巴巴

出版:Arxiv 2023

SparseDFF

题目:SparseDFF: Sparse-View Feature Distillation for One-Shot Dexterous Manipulation

名称:SparseDFF:用于一次性灵巧操作的稀疏视图特征蒸馏

论文:https://arxiv.org/abs/2310.16838

代码:https://github.com/helloqxwang/SparseDFF

单位:北大、斯坦福

出版:Arxiv 2023

SENDD

题目:SENDD: Sparse Efficient Neural Depth and Deformation for Tissue Tracking

名称:SENDD:用于组织追踪的稀疏高效神经深度和变形

论文:https://arxiv.org/abs/2305.06477

代码:

单位:不列颠哥伦比亚大学

出版:Arxiv 2023

6.SparseAttention/注意力

SparseAttention

题目:Sparse Attention with Linear Units

名称:具有线性单元的稀疏注意力机制

论文:https://arxiv.org/abs/2104.07012

代码:https://github.com/bzhangGo/zero

单位:爱丁堡大学、阿姆斯特丹大学、苏黎世大学

出版:EMNLP 2021

NSA

题目:Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention

名称:原生稀疏注意力:硬件对齐且原生可训练的稀疏注意力

论文:https://arxiv.org/abs/2502.11089

代码:

单位:DeepSeek-AI、北京大学

出版:Arxiv 2025

XAttention

题目:XAttention: Block Sparse Attention with Antidiagonal Scoring

名称:XAttention:利用反对角线评分来阻止稀疏注意力

论文:https://arxiv.org/abs/2503.16428

代码:https://github.com/mit-han-lab/x-attention

单位:清华、上交、NVIDIA

出版:Arxiv 2025

SparseTransformer-ID

题目:Learning A Sparse Transformer Network for Effective Image Deraining

名称:学习稀疏变换网络实现有效的图像去噪

论文:https://openaccess.thecvf.com/content/CVPR2023/papers/Chen_Learning_a_Sparse_Transformer_Network_for_Effective_Image_Deraining_CVPR_2023_paper.pdf

代码:

单位:南京理工大学、中国电子科技

出版:CVPR 2023

DSFA

题目:Fast Attention Over Long Sequences With Dynamic Sparse Flash Attention

名称:利用动态稀疏闪光注意力机制快速关注长序列

论文:https://openreview.net/forum?id=UINHuKeWUa

代码:

单位:

出版:OV 2023

7.SparseTransformer/变换器

SparseTransformer

题目:Generating Long Sequences with Sparse Transformers

名称:使用稀疏Transformer生成长序列

论文:https://arxiv.org/abs/1904.10509

代码:

单位:OpenAI

出版:Arxiv

DynamicViT

题目:DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

名称:DynamicViT:具有动态令牌稀疏化的高效视觉Transformer

论文:https://arxiv.org/abs/2106.02034

代码:https://github.com/raoyongming/DynamicViT

单位:清华、UCLA、华盛顿大学

出版:Arxiv 2021

Sparse-VQTransformer

题目:Sparse-VQ Transformer: An FFN-Free Framework with Vector Quantization for Enhanced Time Series Forecasting

名称:稀疏 VQ 变换器:一种用于增强时间序列预测的具有矢量量化的无 FFN 框架

论文:https://arxiv.org/abs/2402.05830

代码:

单位:阿里巴巴

出版:Arxiv 2024

SparseBERT

题目:Sparse*BERT: Sparse Models Generalize To New tasks and Domains

名称:Sparse* BERT:稀疏模型推广到新任务和领域

论文:https://arxiv.org/abs/2205.12452

代码:

单位:伊利诺伊大学厄巴纳-香槟分校

出版:ICML 2022

SparseDETR

题目:Sparse DETR: Efficient End-to-End Object Detection with Learnable Sparsity

名称:稀疏 DETR:具有可学习稀疏性的高效端到端对象检测

论文:https://arxiv.org/abs/2111.14330

代码:https://github.com/kakaobrain/sparse-detr

单位:KakaoBrain、Lunit

出版:ICLR 2022

SparseSwin

题目:SparseSwin: Swin Transformer with Sparse Transformer Block

名称:SparseSwin:带有稀疏变换器块的 Swin Transformer

论文:https://arxiv.org/abs/2309.05224

代码:

单位:Brawijaya大学

出版:Arxiv 2023

Sparsifiner

题目:Sparsifiner: Learning Sparse Instance-Dependent Attention for Efficient Vision Transformers

名称:Sparsifiner:学习稀疏实例相关注意力以实现高效的视觉Transformer

论文:https://arxiv.org/abs/2303.13755

代码:

单位:多伦多大学、圭尔夫大学

出版:CVPR 2023

SparseFormer

题目:SparseFormer: Sparse Visual Recognition via Limited Latent Tokens

名称:SparseFormer:通过有限潜在标记实现稀疏视觉识别

论文:https://arxiv.org/abs/2304.03768

代码:https://github.com/showlab/sparseformer

单位:国立新加坡大学、腾讯AILab、南京大学

出版:Arxiv 2023

8.SparseLSTM/长短期记忆网络

SparseLSTM

题目:Intrinsically Sparse Long Short-Term Memory Networks

名称:固有稀疏长短期记忆网络

论文:https://arxiv.org/abs/1901.09208

代码:

单位:埃因霍温理工大学

出版:Arxiv 2019

9.SparseGAN/生成对抗网络

SparseGAN

题目:SparseGAN: Sparse Generative Adversarial Network for Text Generation

名称:SparseGAN:用于文本生成的稀疏生成对抗网络

论文:https://arxiv.org/abs/2103.11578

代码:

单位:复旦大学

出版:aRXIV 2021

10.SparseMixed/混合网络

SCTN

题目:SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation

名称:SCTN:用于场景流估计的稀疏卷积Transformer网络

论文:https://arxiv.org/abs/2105.04447

代码:

单位:KAUST

出版:AAAI 2022

SparseMixers

题目:Sparse Mixers: Combining MoE and Mixing to build a more efficient BERT

名称:稀疏混合器:结合 MoE 与混合来构建更高效的 BERT

论文:https://arxiv.org/abs/2205.12399

代码:

单位:Google

出版:Arxiv 2022

11.SparseDet/检测

FSDv2

题目:FSD V2: Improving Fully Sparse 3D Object Detection with Virtual Voxels

名称:FSD V2:利用虚拟体素改进完全稀疏 3D 物体检测

论文:https://arxiv.org/abs/2308.03755

代码:https://github.com/tusen-ai/SST

单位:CASIA、图森未来

出版:Arxiv 2023

SparseDet

题目:SparseDet: Improving Sparsely Annotated Object Detection with Pseudo-positive Mining

名称:SparseDet:利用伪正样本挖掘改进稀疏注释对象检测

论文:https://arxiv.org/abs/2201.04620

代码:https://www.cs.umd.edu/~sakshams/SparseDet

单位:马里兰大学、约翰斯·霍普金斯大学

出版:ICCV 2023

SparseDet

题目:SparseDet: Towards End-to-End 3D Object Detection

名称:SparseDet:面向端到端 3D 物体检测

论文:https://arxiv.org/abs/2206.00960

代码:北大、罗切斯特大学、华科

单位:

出版:Arxiv 2022

Sparse4D

题目:Sparse4D: Multi-view 3D Object Detection with Sparse Spatial-Temporal Fusion

名称:Sparse4D:具有稀疏时空融合的多视图 3D 物体检测

论文:https://arxiv.org/abs/2211.10581

代码:https://github.com/linxuewu/Sparse4D

单位:地平线

出版:Arxiv 2022

Sparse4Dv2

题目:Sparse4D v2: Recurrent Temporal Fusion with Sparse Model

名称:Sparse4D v2:与稀疏模型的循环时间融合

论文:https://arxiv.org/abs/2305.14018

代码:https://github.com/linxuewu/Sparse4D

单位:地平线

出版:Arxiv 2023

Sparse4Dv3

题目:Sparse4D v3: Advancing End-to-End 3D Detection and Tracking

名称:Sparse4D v3:推进端到端 3D 检测和跟踪

论文:https://arxiv.org/abs/2311.11722

代码:https://github.com/linxuewu/Sparse4D

单位:地平线

出版:Arxiv 2023

SAFDNet

题目:SAFDNet: A Simple and Effective Network for Fully Sparse 3D Object Detection

名称:SAFDNet:一种简单有效的全稀疏 3D 物体检测网络

论文:https://arxiv.org/abs/2403.05817

代码:https://github.com/zhanggang001/HEDNet

单位:清华、华科、北理工、北航

出版:CVPR 2024

Sparse-YOLO

题目:Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

名称:Sparse-YOLO:YOLOv2 FPGA 加速器的硬件/软件协同设计

论文:https://ieeexplore.ieee.org/document/9122495

代码:

单位:北京交通大学

出版:IEEE 2020

MsSVT++

题目:MsSVT++: Mixed-scale Sparse Voxel Transformer with Center Voting for 3D Object Detection

名称:MsSVT++:用于 3D 物体检测的带中心投票的混合尺度稀疏体素变换器

论文:https://arxiv.org/abs/2401.11718

代码:

单位:北理工

出版:NIPS 2024

SDVRF

题目:SDVRF: Sparse-to-Dense Voxel Region Fusion for Multi-modal 3D Object Detection

名称:SDVRF:用于多模态 3D 物体检测的稀疏到密集体素区域融合

论文:https://arxiv.org/abs/2304.08304

代码:

单位:IEEE Member

出版:Arxiv 2023

SDF

题目:Sparse Dense Fusion for 3D Object Detection

名称:用于 3D 物体检测的稀疏密集融合

论文:https://arxiv.org/abs/2304.04179

代码:

单位:北航、上海AILab

出版:Arxiv 2023

SRCN3D

题目:SRCN3D: Sparse R-CNN 3D for Compact Convolutional Multi-View 3D Object Detection and Tracking

名称:SRCN3D:用于紧凑卷积多视图 3D 物体检测和跟踪的稀疏 R-CNN 3D

论文:https://arxiv.org/abs/2206.14451

代码:https://github.com/synsin0/SRCN3D

单位:清华

出版:CVPR 2023

VPFNet

题目:VPFNet: Improving 3D Object Detection with Virtual Point based LiDAR and Stereo Data Fusion

名称:VPFNet:利用基于虚拟点的激光雷达和立体数据融合改进3D目标检测

论文:https://arxiv.org/abs/2111.14382

代码:

单位:中科大

出版:Arxiv 2021

12.SparseSeg/分割

SparseInst

题目:Sparse Instance Activation for Real-Time Instance Segmentation

名称:用于实时实例分割的稀疏实例激活

论文:https://arxiv.org/abs/2203.12827

代码:https://github.com/hustvl/SparseInst

单位:华科、地平线、CASIA

出版:CVPR 2022

13.SparseDepth/深度估计

Sparse-to-Dense

题目:Sparse-to-Dense: Depth Prediction from Sparse Depth Samples and a Single Image

名称:稀疏到密集:从稀疏深度样本和单个图像进行深度预测

论文:https://arxiv.org/abs/1709.07492

代码:https://github.com/fangchangma/sparse-to-dense

单位:MIT

出版:ICRA 2018

AS2D

题目:Sparse Depth-Guided Attention for Accurate Depth Completion: A Stereo-Assisted Monitored Distillation Approach

名称:稀疏深度引导注意力实现精确深度补全:立体辅助监控蒸馏方法

论文:https://arxiv.org/abs/2303.15840

代码:

单位:港中文

出版:Arxiv 2023

SparseSPN

题目:Sparse SPN: Depth Completion from Sparse Keypoints

名称:稀疏 SPN:通过稀疏关键点完成深度

论文:https://arxiv.org/abs/2212.00987

代码:

单位:伊利诺伊大学厄巴纳-香槟分校

出版:Arxiv 2022

14.SparseTracking/跟踪

SparseTrack

题目:SparseTrack: Multi-Object Tracking by Performing Scene Decomposition based on Pseudo-Depth

名称:SparseTrack:基于伪深度执行场景分解的多目标跟踪

论文:https://arxiv.org/abs/2306.05238

代码:https://github.com/hustvl/SparseTrack

单位:华科

出版:Arxiv 2023

SparseTracking

题目:In Defense of Sparse Tracking: Circulant Sparse Tracker

名称:防御稀疏跟踪:循环稀疏跟踪器

论文:https://openaccess.thecvf.com/content_cvpr_2016/papers/Zhang_In_Defense_of_CVPR_2016_paper.pdf

代码:

单位:KAUST、CASIA

出版:CVPR 2016

SGT

题目:Detection Recovery in Online Multi-Object Tracking with Sparse Graph Tracker

名称:稀疏图跟踪器在线多目标跟踪中的检测恢复

论文:https://openaccess.thecvf.com/content/WACV2023/papers/Hyun_Detection_Recovery_in_Online_Multi-Object_Tracking_With_Sparse_Graph_Tracker_WACV_2023_paper.pdf

代码:

单位:港科大

出版:WACV 2023

SRT3D

题目:SRT3D: A Sparse Region-Based 3D Object Tracking Approach for the Real World

名称:SRT3D:一种基于稀疏区域的真实世界 3D 对象跟踪方法

论文:https://arxiv.org/abs/2110.12715

代码:

单位:TUM

出版:Arxiv 2021

15.SparseLane/车道线

SparseLaneformer

题目:Sparse Laneformer

名称:稀疏车道 Transformer

论文:https://arxiv.org/abs/2404.07821

代码:

单位:ADM AI

出版:Arxiv

SPG-3DLane

题目:Sparse Point Guided 3D Lane Detection

名称:稀疏点引导 3D 车道检测

论文:https://ieeexplore.ieee.org/document/10376563

代码:

单位:北京理工大学、元戎启行

出版:ICCV 2023

16.SparseBEV/鸟瞰图

SparseBEV

题目:SparseBEV: High-Performance Sparse 3D Object Detection from Multi-Camera Videos

名称:SparseBEV:从多摄像机视频中进行高性能稀疏 3D 物体检测

论文:https://arxiv.org/abs/2308.09244

代码:https://github.com/MCG-NJU/SparseBEV

单位:南京大学、上海AILab

出版:ICCV 2023

PointBeV

题目:PointBeV: A Sparse Approach to BeV Predictions

名称:PointBeV:一种稀疏的 BeV 预测方法

论文:https://arxiv.org/abs/2312.00703

代码:https://github.com/valeoai/PointBeV

单位:ValeoAI

出版:Arxiv

17.SparseOccupancy/占用

SparseOcc

题目:Fully Sparse 3D Occupancy Prediction

名称:完全稀疏 3D 占用预测

论文:https://arxiv.org/abs/2312.17118

代码:https://github.com/MCG-NJU/SparseOcc

单位:南京大学、上海AILab

出版:ECCV 2024

18.SparseSCC/场景语义补全

VoxFormer

题目:VoxFormer: Sparse Voxel Transformer for Camera-based 3D Semantic Scene Completion

名称:VoxFormer:基于相机的 3D 语义场景完成的稀疏体素Transformer

论文:https://arxiv.org/abs/2302.12251

代码:https://github.com/NVlabs/VoxFormer

单位:NYU、NVIDIA、ASU

出版:CVPR 2023

19.SparseStereo/双目

SCV-Stereo

题目:SCV-Stereo: Learning Stereo Matching from a Sparse Cost Volume

名称:SCV-Stereo:从低廉的成本中学习立体声匹配

论文:https://arxiv.org/abs/2107.08187

代码:https://sites.google.com/view/scv-stereo

单位:香港大学

出版:ICIP 2021

StereoMatch-SDP

题目:Stereo Matching with Cost Volume based Sparse Disparity Propagation

名称:基于成本体积的稀疏视差传播立体匹配

论文:https://arxiv.org/abs/2201.11937

代码:

单位:深圳技术大学

出版:Arxiv 2022

Fast-MVSNet

题目:Fast-MVSNet: Sparse-to-Dense Multi-View Stereo With Learned Propagation and Gauss-Newton Refinement

名称:快速MVSNet:具有学习传播和高斯-牛顿精化的稀疏到密集多视图立体

论文:https://openaccess.thecvf.com/content_CVPR_2020/papers/Yu_Fast-MVSNet_Sparse-to-Dense_Multi-View_Stereo_With_Learned_Propagation_and_Gauss-Newton_Refinement_CVPR_2020_paper.pdf

代码:

单位:上海科技大学

出版:CVPR 2020

SPLINE-Net

题目:SPLINE-Net: Sparse Photometric Stereo through Lighting Interpolation and Normal Estimation Networks

名称:SPLINE Net:通过光照插值和法线估计网络实现稀疏光度立体

论文:https://openaccess.thecvf.com/content_ICCV_2019/papers/Zheng_SPLINE-Net_Sparse_Photometric_Stereo_Through_Lighting_Interpolation_and_Normal_Estimation_ICCV_2019_paper.pdf

代码:

单位:南洋理工、清华、北大、鹏程Lab

出版:ICCV 2019

20.SparseLidar/激光雷达

SparsePointPillars

题目:Sparse PointPillars: Maintaining and Exploiting Input Sparsity to Improve Runtime on Embedded Systems

名称:稀疏点柱:维护和利用输入稀疏性来改善嵌入式系统的运行时间

论文:https://arxiv.org/abs/2106.06882

代码:https://github.com/kylevedder/SparsePointPillars

单位:宾夕法尼亚大学

出版:IROS 2022

SVQNet

题目:SVQNet: Sparse Voxel-Adjacent Query Network for 4D Spatio-Temporal LiDAR Semantic Segmentation

名称:SVQNet:用于 4D 时空 LiDAR 语义分割的稀疏体素相邻查询网络

论文:https://arxiv.org/abs/2308.13323

代码:

单位:清华、港科大、元戎

出版:ICCV2023

SpOctA

题目:SpOctA: A 3D Sparse Convolution Accelerator with Octree-Encoding-Based Map Search and Inherent Sparsity-Aware Processing

名称:SpOctA:具有基于八叉树编码的地图搜索和固有稀疏感知处理的 3D 稀疏卷积加速器

论文:https://arxiv.org/abs/2308.09249

代码:

单位:上海交大、同济大学、辉羲智能

出版:ICCAD 2023

SSC3OD

题目:SSC3OD: Sparsely Supervised Collaborative 3D Object Detection from LiDAR Point Clouds

名称:SSC3OD:基于 LiDAR 点云的稀疏监督协作 3D 物体检测

论文:https://arxiv.org/abs/2307.00717

代码:

单位:北京交通大学

出版:SMC 2023

SPARSE-R

题目:SPARSE-R: A point-cloud tracer with random forcing

名称:SPARSE-R:具有随机强制的点云追踪器

论文:https://arxiv.org/abs/2305.15610

代码:

单位:圣地亚哥州立大学

出版:Arxiv 2023

S3Net

题目:S3Net: 3D LiDAR Sparse Semantic Segmentation Network

名称:S3Net:3D LiDAR 稀疏语义分割网络

论文:https://arxiv.org/abs/2103.08745

代码:

单位:华为NoahsArkLab

出版:Arxiv 2021

SPADE

题目:SPADE: Sparse Pillar-based 3D Object Detection Accelerator for Autonomous Driving

名称:SPADE:基于稀疏支柱的自动驾驶3D目标检测加速器

论文:https://arxiv.org/abs/2305.07522

代码:

单位:汉阳大学、UCSD

出版:Arxiv 2023

SVRASTER

题目:Sparse Voxels Rasterization: Real-time High-fidelity Radiance Field Rendering

名称:稀疏体素光栅化:实时高保真辐射场渲染

论文:https://arxiv.org/abs/2412.04459

代码:https://github.com/NVlabs/svraster

DSVT

题目:DSVT: Dynamic Sparse Voxel Transformer with Rotated Sets

名称:DSVT:具有旋转集的动态稀疏体素Transformer

论文:https://arxiv.org/abs/2301.06051

代码:

单位:北大、萨尔大学、华为、之江Lab

出版:CVPR 2023

SST

题目:Embracing Single Stride 3D Object Detector with Sparse Transformer

名称:使用稀疏变换器实现单步 3D 物体检测器

论文:https://arxiv.org/abs/2112.06375

代码:https://github.com/tusen-ai/SST

单位:中科院自动化所、UIUC、CMU、清华、图森未来

出版:Arxiv 2021

21.SparseRadar/毫米波雷达

SparseRadNet

题目:SparseRadNet: Sparse Perception Neural Network on Subsampled Radar Data

名称:SparseRadNet:基于子采样雷达数据的稀疏感知神经网络

论文:https://arxiv.org/abs/2406.10600

代码:

单位:伍珀塔尔大学

出版:Arxiv 2024

RadarInstanceTransformer

题目:Radar Instance Transformer: Reliable Moving Instance Segmentation in Sparse Radar Point Clouds

名称:雷达实例Transformer:稀疏雷达点云中可靠的移动实例分割

论文:https://arxiv.org/abs/2309.16435

代码:

单位:波恩大学

出版:Arxiv 2023

SKPP-DPVCN

题目:Exploiting Sparsity in Automotive Radar Object Detection Networks

名称:利用汽车雷达目标检测网络中的稀疏性

论文:https://arxiv.org/abs/2308.07748

代码:

单位:BOSCH

出版:Arxiv 2023

22.Sparse4DRadar/4D毫米波雷达

SAOCS-4DRadar

题目:4D Automotive Radar Exploiting Sparse Array Optimization and Compressive Sensing

名称:利用稀疏阵列优化和压缩感知的 4D 汽车雷达

论文:https://ieeexplore.ieee.org/document/10476872

代码:

单位:阿拉巴马大学、斯巴达雷达

出版:IEEE 2023

K-Radar

题目:K-Radar: 4D Radar Object Detection for Autonomous Driving in Various Weather Conditions

名称:K-Radar:用于各种天气条件下自动驾驶的4D雷达目标检测

论文 :https://papers.neurips.cc/paper_files/paper/2022/file/185fdf627eaae2abab36205dcd19b817-Paper-Datasets_and_Benchmarks.pdf

代码:

单位:CCS、RP、KAIST

出版:NeurIPS 2022

23.SparseFusion/融合

SparseFusion

题目:SparseFusion: Fusing Multi-Modal Sparse Representations for Multi-Sensor 3D Object Detection

名称:SparseFusion:融合多模态稀疏表示以实现多传感器 3D 物体检测

论文:https://arxiv.org/abs/2304.14340

代码:https://github.com/yichen928/SparseFusion

单位:UC Berkeley、Google、加州理工学院

出版:Arxiv 2023

SparseFusion

题目:SparseFusion: Efficient Sparse Multi-Modal Fusion Framework for Long-Range 3D Perception

名称:SparseFusion:用于远程 3D 感知的高效稀疏多模态融合框架

论文:https://arxiv.org/abs/2403.10036

代码:

单位:中科大、图森未来

出版:Arxiv 2024

FullySparseFusion

题目:Fully Sparse Fusion for 3D Object Detection

名称:用于 3D 物体检测的完全稀疏融合

论文:https://arxiv.org/abs/2304.12310

代码:https://github.com/BraveGroup/FullySparseFusion

单位:中国科学院

出版:TPMAI 2024

SpaRC

题目:SpaRC: Sparse Radar-Camera Fusion for 3D Object Detection

名称:SpaRC:用于 3D 物体检测的稀疏雷达-摄像机融合

论文:https://arxiv.org/abs/2309.16435

代码:https://github.com/phi-wol/sparc

单位:波恩大学

出版:Arxiv 2023

SLS-Fusion

题目:Sparse LiDAR and Stereo Fusion (SLS-Fusion) for Depth Estimationand 3D Object Detection

名称:用于深度估计和 3D 物体检测的稀疏激光雷达和立体融合 (SLS-Fusion)

论文:https://arxiv.org/abs/2103.03977

代码:

单位:图卢兹大学

出版:Arxiv 2021

SparseLIF

题目:SparseLIF: High-Performance Sparse LiDAR-Camera Fusion for 3D Object Detection

名称:SparseLIF:用于 3D 物体检测的高性能稀疏 LiDAR-相机融合

论文:https://arxiv.org/abs/2403.07284

代码:

单位:商汤、四川大学

出版:ECCV 2024

24.SparseOdometry/里程计

LDSO

题目:LDSO: Direct Sparse Odometry with Loop Closure

名称:LDSO:带回环闭合的直接稀疏里程计

论文:https://ieeexplore.ieee.org/document/8593376

代码:

单位:TUM

出版:IROS 2028

StereoDSO

题目:Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras

名称:立体DSO:基于立体相机的大规模直接稀疏视觉里程计

论文:https://arxiv.org/abs/1708.07878

代码:

单位:TUM

出版:ICCV 2017

DSO

题目:Direct Sparse Odometry

名称:直接稀疏里程计

论文:https://arxiv.org/abs/1607.02565

代码:

单位:TUM、Intel

出版:Arxiv 2016

EDSO

题目:Event-aided Direct Sparse Odometry

名称:事件辅助直接稀疏里程计

论文:https://arxiv.org/abs/2204.07640

代码:https://rpg.ifi.uzh.ch/eds

单位:苏黎世联邦理工学院

出版:Arxiv 2022

R-SDSO

题目:R-SDSO: Robust stereo direct sparse odometry

名称:R-SDSO:稳健的立体声直接稀疏里程计

论文:https://link.springer.com/article/10.1007/s00371-021-02278-0

代码:

单位:上海交大

出版:LK 2022

25.SparsePnC/规控

MS-Net

题目:MS-Net: A Multi-Path Sparse Model for Motion Prediction in Multi-Scenes

名称:MS-Net:一种用于多场景运动预测的多路径稀疏模型

论文:https://arxiv.org/abs/2403.00353

代码:

单位:同济大学

出版:RAL 2024

Sim-STD

题目:Learning to Simulate on Sparse Trajectory Data

名称:学习在稀疏轨迹数据上进行模拟

论文:https://arxiv.org/abs/2103.11845

代码:

单位:宾夕法尼亚州立大学、上海交大

出版:ECML-PKDD 2020

26.SparseE2E/端到端

SparseDrive

题目:SparseDrive: End-to-End Autonomous Driving via Sparse Scene Representation

名称:SparseDrive:通过稀疏场景表示实现端到端自动驾驶

论文:https://arxiv.org/abs/2405.19620

代码:https://github.com/swc-17/SparseDrive

单位:清华、地平线

出版:Arxiv 2024

SparseAD

题目:SparseAD: Sparse Query-Centric Paradigm for Efficient End-to-End Autonomous Driving

名称:SparseAD:以稀疏查询为中心的高效端到端自动驾驶范式

论文:https://arxiv.org/abs/2404.06892

代码:

单位:迈驰智行、中国科学院大学

出版:Arxiv 2024

27.SparseGS/高斯泼溅

SparseGS

题目:SparseGS: Real-Time 360° Sparse View Synthesis using Gaussian Splatting

名称:SparseGS:使用高斯分层的实时 360° 稀疏视图合成

论文:https://arxiv.org/abs/2312.00206

代码:https://github.com/ForMyCat/SparseGS

单位:UCA、USC

出版:3DV 2025

FreeSplatter

题目:FreeSplatter: Pose-free Gaussian Splatting for Sparse-view 3D Reconstruction

名称:FreeSplatter:用于稀疏视图三维重建的无姿态高斯溅射

论文:https://arxiv.org/abs/2412.09573

代码:https://github.com/TencentARC/FreeSplatter

单位:腾讯ARCLab、香港大学

出版:Arxiv 2024

28.SparseDM/扩散模型

SparseDM

题目:SparseDM: Toward Sparse Efficient Diffusion Models

名称:SparseDM:迈向稀疏高效扩散模型

论文:https://arxiv.org/abs/2404.10445

代码:

单位:清华大学、奥诺仪器

出版:aRXIV 2024

SparseDiffusionPolicy

题目:Sparse Diffusion Policy: A Sparse, Reusable, and Flexible Policy for Robot Learning

名称:稀疏扩散策略:一种稀疏、可重用且灵活的机器人学习策略

论文:https://arxiv.org/abs/2407.01531

代码:

单位:UCBerkeley、CMU

出版:CoRL 2024

MVDiffusion++

题目:MVDiffusion++: A Dense High-Resolution Multi-view Diffusion Model for Single or Sparse-View 3D Object Reconstruction

名称:MVDiffusion++:用于单视图或稀疏视图 3D 物体重建的密集高分辨率多视图扩散模型

论文:https://arxiv.org/abs/2402.12712

代码:https://mvdiffusion-plusplus.github.io/

单位:西蒙弗雷泽大学、Meta

出版:ECCV 2024

29.SparseNeRF/神经网络辐射场

SparseNeRF

题目:SparseNeRF: Distilling Depth Ranking for Few-shot Novel View Synthesis

名称:SparseNeRF:提炼深度排序以实现小样本新颖视图合成

论文:https://arxiv.org/abs/2303.16196

代码:https://github.com/Wanggcong/SparseNeRF

单位:南洋理工

出版:ICCV 2023

VRS-NeRF

题目:VRS-NeRF: Visual Relocalization with Sparse Neural Radiance Field

名称:VRS-NeRF:利用稀疏神经辐射场进行视觉重定位

论文:https://arxiv.org/abs/2404.09271

代码:https://github.com/feixue94/vrs-nerf

单位:剑桥、丰田

出版:Arxiv 2024

Sparse-DeRF

题目:Sparse-DeRF: Deblurred Neural Radiance Fields from Sparse View

名称:Sparse-DeRF:从稀疏视图中去除模糊的神经辐射场

论文:https://arxiv.org/abs/2407.06613

代码:

单位:延世大学

出版:Arxiv 2024

SparseSat-NeRF

题目:SparseSat-NeRF: Dense Depth Supervised Neural Radiance Fields for Sparse Satellite Images

名称:SparseSat-NeRF:针对稀疏卫星图像的密集深度监督神经辐射场

论文:https://arxiv.org/abs/2309.00277

代码:https://github.com/LulinZhang/SpS-NeRF

单位:CNRS、IGN-ENSG

出版:ISPRS 2024

Sp360

题目:Sp360: Sparse-view 360 Scene Reconstruction using Cascaded 2D Diffusion Priors

名称:Sp360:使用级联 2D 扩散先验进行稀疏视图 360 场景重建

论文:https://arxiv.org/abs/2405.16517

代码:

单位:萨兰大学

出版:Arxiv 2024

SPARF

题目:SPARF: Large-Scale Learning of 3D Sparse Radiance Fields from Few Input Images

名称:SPARF:从少量输入图像大规模学习 3D 稀疏辐射场

论文:https://arxiv.org/abs/2212.09100

代码:https://abdullahamdi.com/sparf/

单位:TUM、(KAUST

出版:Arxiv 2022

SparseNeuS

题目:SparseNeuS: Fast Generalizable Neural Surface Reconstruction from Sparse Views

名称:SparseNeuS:从稀疏视图快速通用神经表面重建

论文:https://arxiv.org/abs/2206.05737

代码:https://github.com/xxlong0/SparseNeuS

单位:香港大学、腾讯Game

出版:ECCV 2022

30.SparseMoE/混合专家模型

SEER-MoE

题目:SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts

名称:SEER-MoE:通过混合专家的正则化提高稀疏专家效率

论文:https://arxiv.org/abs/2404.05089

代码:

单位:斯坦福、Google、NVIDIA

出版:Arxiv 2024

SparseMoe-Dropout

题目:Sparse MoE as the New Dropout: Scaling Dense and Self-Slimmable Transformers

名称:稀疏MoE作为新的输出:缩放密集和自减薄变压器

论文:https://arxiv.org/abs/2303.01610

代码:https://github.com/VITA-Group/Random-MoE-as-Dropout

单位:得克萨斯大学奥斯汀分校

出版:Arxiv 2023

SoftMoE

题目:From Sparse to Soft Mixtures of Experts

名称:从稀疏到软混合的专家

论文:https://arxiv.org/abs/2308.00951

代码:

单位:Google DeepMind

出版:ICLR 2024

Lingual-SMoE

题目:Sparse MoE with Language Guided Routing for Multilingual Machine Translation

名称:面向多语言机器翻译的稀疏 MoE 与语言引导路由

论文:https://openreview.net/forum?id=ySS7hH1smL

代码:https://github.com/UNITES-Lab/Lingual-SMoE

单位:UNCC、港中文、UTA

出版:OV 2024

总结

自动驾驶之心

论文辅导来啦

知识星球交流社区

近4000人的交流社区,近300+自动驾驶公司与科研结构加入!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(大模型、端到端自动驾驶、世界模型、仿真闭环、3D检测、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型,更有行业动态和岗位发布!欢迎加入。

独家专业课程

端到端自动驾驶大模型、VLA、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、CUDA与TensorRT模型部署、大模型与自动驾驶、NeRF、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频

学习官网:www.zdjszx.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值