RCNN中的bounding box regression详解


1.jpg

2.jpg

3.jpg

4.jpg

5.jpg


6.jpg


总结下上面大神所陈述的内容:

1.关于 公式1~4是怎么来的,从原paper来看,作者是引入了scale-invariant translation 分别对于x和y,即对于xy坐标引入同一个scale,加上作者在他的另一篇论文Rich feature hierarchies for accurate object detection and semantic segmentation 中阐述的“ proposal region不能和ground truth相差太远”(两者iou>0.6)如果相差太远是无法得到boundingbox regression的,所以在公式1~2中相当于将dx和dy regularize 在一定的数值范围内,即dx = (Gx-Px)/Pw 这里Gx是近似groundtruth 的 predicted 值。

同理对于dw和dh,作者引入log-space translation, 也是将(Gw,Pw)这对差距规划入一个小的范围内,即 dw = log(Gw/Pw)。所以在最终的loss function中就相当于平均分配了xy 和wh的loss比例,不会因为wh的loss过大忽略了xy的loss,反之亦然。


2. 训练该regression 输入为((G, P)一组训练example) + (CNN pool5的feature 即 lossfunction中的 SITA(P), 为了得到 parameter w* 。 其中(G,P) pair用来求出 t* 。lossfunction 第一部分为数据loss 第二部分为正则化。

测试阶段 输入为CNN pool5提取出的feature SITA(P), 通过线性模型 w* 乘以 SITA(P)就得出 dx,dy,dw,dh,这四个值有了就有了新的 bounding box

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Siou Loss是一种用于边界框回归的损失函数,它比传统的平方损失函数更强大。 边界框回归是目标检测任务的重要组成部分,它的目标是预测图像物体的位置和大小。传统的平方损失函数在边界框回归常被使用,但它在处理物体尺寸变化和不均衡数据上存在一些问题。而Siou Loss通过解决这些问题,提供了更强大的学习能力。 Siou Loss通过引入IoU(Intersection over Union)来度量预测边界框和真实边界框之间的相似度。IoU是指预测边界框和真实边界框的交集区域与并集区域的比值,它能更好地描述边界框的匹配度。 Siou Loss不仅考虑了预测边界框和真实边界框之间的位置差异,还考虑了它们之间的尺度差异。这使得Siou Loss在处理物体尺寸变化时更加灵活,能够更好地适应不同尺寸的物体。 此外,Siou Loss还能够解决数据不均衡的问题。在目标检测任务,负样本(非物体区域)通常远远多于正样本(物体区域),这导致传统的平方损失函数在训练过程很难平衡正负样本之间的关系。而Siou Loss通过IoU作为权重,可以有效地平衡正负样本之间的重要性,提高了模型对于正样本的关注程度。 综上所述,Siou Loss作为一种更为强大的学习方法,在边界框回归任务具有优势。它通过引入IoU来度量相似度,并解决了尺度变化和数据不均衡的问题,提高了模型的学习能力和预测准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值