边框回归(Bounding Box Regression)详解

Bounding-Box regression

最近一直看检测有关的Paper, 从rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年cvpr最新的yolo9000。这些paper中损失函数都包含了边框回归,除了rcnn详细介绍了,其他的paper都是一笔带过,或者直接引用rcnn就把损失函数写出来了。前三条网上解释比较多,后面的两条我看了很多paper,才得出这些结论。

  • 为什么要边框回归?
  • 什么是边框回归?
  • 边框回归怎么做的?
  • 边框回归为什么宽高,坐标会设计这种形式?
  • 为什么边框回归只能微调,在离Ground Truth近的时候才能生效?

为什么要边框回归?

这里引用王斌师兄的理解,如下图所示:


这里写图片描述

对于上图,绿色的框表示Ground Truth, 红色的框为Selective Search提取的Region Proposal。那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<0.5), 那么这张图相当于没有正确的检测出飞机。 如果我们能对红色的框进行微调, 使得经过微调后的窗口跟Ground Truth 更接近, 这样岂不是定位会更准确。 确实,Bounding-box regression 就是用来微调这个窗口的。

边框回归是什么?

继续借用师兄的理解:对于窗口一般使用四维向量 (x,y,w,h) 来表示, 分别表示窗口的中心点坐标和宽高。 对于图 2, 红色的框 P 代表原始的Proposal, 绿色的框 G 代表目标的 Ground Truth, 我们的目标是寻找一种关系使得输入原始的窗口 P 经过映射得到一个跟真实窗口 G 更接近的回归窗口 G^


这里写图片描述

边框回归的目的既是:给定 (Px,Py,Pw,Ph) 寻找一种映射 f , 使得 f(Px,Py,Pw,Ph)=(Gx^,Gy^,Gw^,Gh^) 并且 (Gx^,Gy^,Gw^,Gh^)(Gx,Gy,Gw,Gh)

边框回归怎么做的?

那么经过何种变换才能从图 2 中的窗口 P 变为窗口 G^ 呢? 比较简单的思路就是: 平移+尺度放缩

  1. 先做平移 (Δx,Δy) Δx=Pwdx(P),Δy=Phdy(P) 这是R-CNN论文的:
    G^
  • 768
    点赞
  • 1981
    收藏
    觉得还不错? 一键收藏
  • 139
    评论
Siou Loss是一种用于边界框回归的损失函数,它比传统的平方损失函数更强大。 边界框回归是目标检测任务中的重要组成部分,它的目标是预测图像中物体的位置和大小。传统的平方损失函数在边界框回归中常被使用,但它在处理物体尺寸变化和不均衡数据上存在一些问题。而Siou Loss通过解决这些问题,提供了更强大的学习能力。 Siou Loss通过引入IoU(Intersection over Union)来度量预测边界框和真实边界框之间的相似度。IoU是指预测边界框和真实边界框的交集区域与并集区域的比值,它能更好地描述边界框的匹配度。 Siou Loss不仅考虑了预测边界框和真实边界框之间的位置差异,还考虑了它们之间的尺度差异。这使得Siou Loss在处理物体尺寸变化时更加灵活,能够更好地适应不同尺寸的物体。 此外,Siou Loss还能够解决数据不均衡的问题。在目标检测任务中,负样本(非物体区域)通常远远多于正样本(物体区域),这导致传统的平方损失函数在训练过程中很难平衡正负样本之间的关系。而Siou Loss通过IoU作为权重,可以有效地平衡正负样本之间的重要性,提高了模型对于正样本的关注程度。 综上所述,Siou Loss作为一种更为强大的学习方法,在边界框回归任务中具有优势。它通过引入IoU来度量相似度,并解决了尺度变化和数据不均衡的问题,提高了模型的学习能力和预测准确性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 139
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值