人脸论文解读系列——三维人脸重建(一)

本文详细介绍了使用手机照片或视频进行三维人脸重建的方法,重点关注模型形状,适用于人脸识别。通过68个面部特征点提取,将人脸分为四个区域,计算最佳拟合模型并进行融合变形,同时探讨了SSIM和LBP等相似性度量在权重计算中的应用,最终创建带有纹理的3D人脸模型。
摘要由CSDN通过智能技术生成

基于区域最佳匹配融合的三维人脸重建

《3D Face Reconstruction with Region Based Best Fit Blending Using Mobile Phone for Virtual Reality Based Social Media》

文章来源:researchgate

文章链接:https://arxiv.org/pdf/1801.01089.pdf

github:https://github.com/CWBARSA/face_Papers/blob/master/3D%20Face%20Reconstruction%20with%20Region%20Based%20Best%20Fit%20Blending.pdf

引用:Anbarjafari G , Haamer R E , Lusi I , et al. 3D Face Reconstruction with Region Based Best Fit Blending Using Mobile Phone for Virtual Reality Based Social Media[J]. 2017.

 

该文章提出了一种新的方法,通过获取的手机照片或视频画面重建一个3D人脸模型。该方法更多地关注模型形状,以便用于人脸识别。检测68个面部特征点,并使用它们来分离人脸的四个区域。对于每个区域,找到最佳拟合模型,并进一步变形组合,以找到每个区域的最佳拟合模型。然后,将这些模型组合,并进一步变形,以恢复原来的面部比例。该文章还提出了一种对结果模型进行纹理化的方法,其中使用上述特征点为结果模型生成纹理。

 

目录

基于区域最佳匹配融合的三维人脸重建

一、方法流程

1、数据准备

2、提取特征点

3、脸部区域的权重计算

4、创建混合模型

5、模型变形

6、创建纹理


 

 

一、方法流程

1、数据准备

(1)人脸数据库主要有由217个白种男性头部区域的3D扫描模型组成,这些扫描模型被变形和简化,因此所有扫描模型共享相同的顶点映射和计数。所有的纹理图也扭曲到拟合相同的UV贴图。在这一步骤中,从原始扫描中的头部后面的所有东西都被丢弃,包括头发和耳朵。在原始数据中,一些扫描包含面部毛发或严重的噪声/变形。然而,其余的区域通常不受影响。

  1. 初始三维模型:预处理模型包含6000个四边形面片组成的网格,和与之相应的2048×2048 分辨率的RGB纹理图。所有模型中顶点的索引是有序的,从模型到模型没有变化。
  2. 渲染模型:为了得到基于输入图像的每个区域模型的权重,制作了渲染人脸区域的辅助数据库。所有的模型都是使用透视相机以正面朝向绘制的,透视相机具有5个来自正面、侧面和顶部的定向光源,所有光源都指向头部的中心。然后将所绘制的图像切成4个部分,对应眼睛、鼻子、嘴部区域和脸部的其余部分。

                                                                     

 

2、提取特征点

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值