【DP】I Will Like Matrix!

I Will Like Matrix!

题目

在一个 n ∗ m 的矩阵 A 的所有位置中分别填入 0 或 1,要求填入的数必须满足 Ai,j ≤ Ai,j+1 且
A i,j ≤ A i+1,j 。询问一共有多少种不同的矩阵,并将答案对 1,000,000,007 取模。

输入

共一行包含两个整数 n 和 m。

输出

共一行包含一个整数 ans,表示矩阵个数模 1,000,000,007 的值。

输入样例

2 2

输出样例

6

注意

对于 60% 的数据:n,m,k ≤ 300
对于 100% 的数据:n,m,k ≤ 5000

解题思路

其实这道题是由:

a [ i ] [ j ] = ( a [ i − 1 ] [ j ] + a [ i ] [ j − 1 ] + 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值