你这个学期必须选修 numCourse 门课程,记为 0 到 numCourse-1 。
在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们:[0,1]
给定课程总量以及它们的先决条件,请你判断是否可能完成所有课程的学习?
示例 1:
输入: 2, [[1,0]]
输出: true
解释: 总共有 2 门课程。学习课程 1 之前,你需要完成课程 0。所以这是可能的。
示例 2:
输入: 2, [[1,0],[0,1]]
输出: false
解释: 总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0;并且学习课程 0 之前,你还应先完成课程 1。这是不可能的。
题解(一):这道题是一道拓扑排序问题,即对于一个给定包含n个结点的有向图,给结点编号并进行排列,若对于图中任意一条有向边(x,y),在排列中x都在y的前面,则称这种排列为拓扑排序,如果一个图中的某一条有向边形成了一个环,则该图一定没有拓扑排序。因为不可能同时满足x在y前面,y也要在x前面。所以对于这道题,我们要做的就是把课程编号当作有向图结点,将课程的先决条件当作方向,构造有向图,判断所构成的图中是否存在闭环。
判断是否存在闭环的方法就是遍历图中结点,找闭环,我们可以使用DFS算法实现找闭环的流程
DFS算法代码
class Solution {
//hoop用于判断是否成环
boolean hoop=false;
public boolean canFinish(int numCourses, int[][] prerequisites) {
/*
* map用于存储图中结点,和该结点的有向连接点
* search用于存储该结点的状态:0表示该点目前还没有被搜索,
* 1表示该点正在被搜索,2表示该点已搜索完成
*/
ArrayList<ArrayList<Integer>>map=new ArrayList<>();
for(int i=0;i<numCourses;i++){
map.add(new ArrayList<>());
}
//search初始化,元素初始取值全为0(默认)
int[] search=new int[numCourses];
for(int i=0;i< prerequisites.length;i++){
map.get(prerequisites[i][1]).add(prerequisites[i][0]);
}
for(int i = 0; i < numCourses&&hoop==false; i++){
DFS(i,search,map);
}
return !hoop;
}
/*
* 进行DFS算法遍历,采用递归的方法,若递归到的该点的
* 所有有向终点都已经被搜索或者没有有向线,则该点标记为
* 已搜索,若在搜索的过程中,搜索到的点是标记被为正在搜索的点,
* 就说明找到了闭环,原有向图没有拓扑排序
*/
private void DFS(int start,int []search,ArrayList<ArrayList<Integer>>map){
search[start]=1;
for(int k:map.get(start)){
if(search[k]==0)
DFS(k,search,map);
else if(search[k]==1)
hoop=true;
if(hoop==true)
return;
}
search[start]=2;
}
}
题解(二):对于有向图的每一个结点,分别有入边通向这个结点,和出边从这个结点到达其他结点,一个拓扑排序的开头一定没有入边,因为学的第一门课程之前是不需要学任何课程的,学完这门课程后,将这门课程的出边全部删除,若某条出边所对应课程没有任何入边了,则可以顺利学到这门课程,拓扑排序中则可以加入这个结点,然后再删掉这门课程的所有出边,一直这样操作下去,若能够学完所有课程,则该有向图有拓扑排序,否则则没有拓扑排序
import java.util.*;
class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
ArrayList<ArrayList<Integer>>map=new ArrayList<>();
for(int i=0;i<numCourses;i++)
map.add(new ArrayList<>());
int[]inCourses=new int[prerequisites.length];
//存储有向图结点和出边入边以及结点入边的个数
for(int i=0;i< prerequisites.length;i++){
map.get(prerequisites[i][1]).add(prerequisites[i][0]);
inCourses[prerequisites[i][1]]++;
}
//队列中存储目前可以学习的课程(不需要再提前学其他课的课程)
Queue<Integer>BFS=new LinkedList<>();
for(int i=0;i<numCourses;i++){
if(inCourses[i]==0)
BFS.add(i);
}
int check=0;
while(!BFS.isEmpty()){
int head=BFS.poll();
check++;
//若某结点的入边个数变为零,则说明可以学这门课程了,将其加入BFS队列
for(int x:map.get(head)){
inCourses[x]--;
if(inCourses[x]==0)
BFS.add(x);
}
}
return check==numCourses;
}
}