51nod-1099 任务执行顺序

42 篇文章 0 订阅

基准时间限制:1 秒 空间限制:131072 KB 分值: 20  难度:3级算法题
 收藏
 关注
有N个任务需要执行,第i个任务计算时占R[i]个空间,而后会释放一部分,最后储存计算结果需要占据O[i]个空间(O[i] < R[i])。
例如:执行需要5个空间,最后储存需要2个空间。给出N个任务执行和存储所需的空间,问执行所有任务最少需要多少空间。
Input
第1行:1个数N,表示任务的数量。(2 <= N <= 100000)
第2 - N + 1行:每行2个数R[i]和O[i],分别为执行所需的空间和存储所需的空间。(1 <= O[i] < R[i] <= 10000)
Output
输出执行所有任务所需要的最少空间。
Input示例
20
14 1
2 1
11 3
20 4
7 5
6 5
20 7
19 8
9 4
20 10
18 11
12 6
13 12
14 9
15 2
16 15
17 15
19 13
20 2
20 1
Output示例
135

思路:

1.对于两组操作 (R[1],O[1]),(R[2],O[2])

若先操作 R[1] : max(R[1],R[2]+O[1])

若先操作 R[2]:max(R[2],R[1]+O[2])

因此 ans=min(R[2]+O[1],R[1]+O[2]).

若 R[2]+O[1]<R[1]+O[2] ,应该先执行R[1],则 R[2]-O[2]<R[1]-O[1], 那么可知 R[i]-O[i]大的先记进行操作。

2.对于本题可以转换成 一个整数ans减去 a[i],加上b[i] ,(a[i],b[i]均为正整数),过程中 ans不能为负数.

而 a[i]=R[i],b[i]=R[i]-O[i],那么容易想到 先对 a[n],b[n]组中 b[i]最大的进行操作

因为 ans每次操作都在减小,那么应该先加上 b[i]最大的,下面简单证明:

设有两组 (a1,b1),(a2,b2)

若选择 a1先操作:max(a1,a1+a2-b1)  a2>b1

若选择 a2先操作:max(a2,a1+a2-b2)  a1>b2

又b1,b2不可能同时大于a2,a1.则 ans=min(a1+a2-b1,a1+a2-b2);    故 取 b1,b2中最大的一个

Code:

#include<iostream>
#include<algorithm>
using namespace std;

struct node{
	int a;
	int b;
	bool operator<(const node &x){
		return a-b>x.a-x.b;
	}
};
const int MAX_N=100005;
int n;
node c[MAX_N];

int main()
{
	ios::sync_with_stdio(false);
	cin>>n;
	for(int i=0;i<n;++i)
		cin>>c[i].a>>c[i].b;
	sort(c,c+n);
	int ans=0,sum=0;
	for(int i=0;i<n;++i)
	{
		ans=max(ans,sum+c[i].a);
		sum+=c[i].b;
	}
	cout<<ans<<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值