基准时间限制:1 秒 空间限制:131072 KB 分值: 20
难度:3级算法题
有N个任务需要执行,第i个任务计算时占R[i]个空间,而后会释放一部分,最后储存计算结果需要占据O[i]个空间(O[i] < R[i])。
例如:执行需要5个空间,最后储存需要2个空间。给出N个任务执行和存储所需的空间,问执行所有任务最少需要多少空间。
Input
第1行:1个数N,表示任务的数量。(2 <= N <= 100000) 第2 - N + 1行:每行2个数R[i]和O[i],分别为执行所需的空间和存储所需的空间。(1 <= O[i] < R[i] <= 10000)
Output
输出执行所有任务所需要的最少空间。
Input示例
20 14 1 2 1 11 3 20 4 7 5 6 5 20 7 19 8 9 4 20 10 18 11 12 6 13 12 14 9 15 2 16 15 17 15 19 13 20 2 20 1
Output示例
135
思路:
1.对于两组操作 (R[1],O[1]),(R[2],O[2])
若先操作 R[1] : max(R[1],R[2]+O[1])
若先操作 R[2]:max(R[2],R[1]+O[2])
因此 ans=min(R[2]+O[1],R[1]+O[2]).
若 R[2]+O[1]<R[1]+O[2] ,应该先执行R[1],则 R[2]-O[2]<R[1]-O[1], 那么可知 R[i]-O[i]大的先记进行操作。
2.对于本题可以转换成 一个整数ans减去 a[i],加上b[i] ,(a[i],b[i]均为正整数),过程中 ans不能为负数.
而 a[i]=R[i],b[i]=R[i]-O[i],那么容易想到 先对 a[n],b[n]组中 b[i]最大的进行操作
因为 ans每次操作都在减小,那么应该先加上 b[i]最大的,下面简单证明:
设有两组 (a1,b1),(a2,b2)
若选择 a1先操作:max(a1,a1+a2-b1) a2>b1
若选择 a2先操作:max(a2,a1+a2-b2) a1>b2
又b1,b2不可能同时大于a2,a1.则 ans=min(a1+a2-b1,a1+a2-b2); 故 取 b1,b2中最大的一个
Code:
#include<iostream>
#include<algorithm>
using namespace std;
struct node{
int a;
int b;
bool operator<(const node &x){
return a-b>x.a-x.b;
}
};
const int MAX_N=100005;
int n;
node c[MAX_N];
int main()
{
ios::sync_with_stdio(false);
cin>>n;
for(int i=0;i<n;++i)
cin>>c[i].a>>c[i].b;
sort(c,c+n);
int ans=0,sum=0;
for(int i=0;i<n;++i)
{
ans=max(ans,sum+c[i].a);
sum+=c[i].b;
}
cout<<ans<<endl;
return 0;
}