牛客-埃森哲杯第十六届上海大学程序设计联赛-L-K序列

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/C_13579/article/details/79952962

链接:https://www.nowcoder.com/acm/contest/91/L
来源:牛客网

题目描述

给一个数组 a,长度为 n,若某个子序列中的和为 K 的倍数,那么这个序列被称为“K 序列”。现在要你 对数组 a 求出最长的子序列的长度,满足这个序列是 K 序列。 

输入描述:
第一行为两个整数 n, K, 以空格分隔,第二行为 n 个整数,表示 a[1] ∼ a[n],1 ≤ n ≤ 105 , 1 ≤ a[i] ≤ 109 , 1 ≤ nK ≤ 107
输出描述:
输出一个整数表示最长子序列的长度 m
示例1
输入
7 5
10 3 4 2 2 9 8
输出
6

一:连续子序列
思路:对于求和为 K的倍数的子序列的最大长度,那么可以对其求前缀和,同时前缀和对K取模,只要两前缀和相同就说明他们之间为 K 的倍数,因此只要对取模前缀和保留下标排序(排序规则以前缀和为主,下标为辅),同时还要注意对前缀和为 0时进行特判。

Code:

#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;

struct node{
	int x;
	int id;
	bool operator<(const node &p)const{
		if(x==p.x)	return id<p.id;
		else	return x<p.x;
	}
};
const int MAX_N=100005;
int n,m;
node a[MAX_N];

int main()
{
	ios::sync_with_stdio(false);
	cin>>n>>m;
	for(int i=1;i<=n;++i)
	{
		cin>>a[i].x;
		a[i].x=(a[i].x+a[i-1].x)%m;	a[i].id=i;
	}
	sort(a+1,a+n+1);
	int ans=0;
	for(int i=1,k=0;i<=n;++i)
		if(a[k].x==a[i].x){
			if(a[i].x==0)	ans=max(ans,max(a[i].id,a[k].id));
			else	ans=max(ans,abs(a[i].id-a[k].id));
		}else	k=i;
	cout<<ans<<endl;
	return 0;
}


二:不连续子序列

Code:

/*
不连续子序列 
思路:遍历子序列a[i]: 对于m=k,遍历 0->m-1: dp[j],temp[j]保留对m取模为 i 的最长子序列长度,
那么 dp[(j+a[i])%m]=temp[j]+1;	遍历完m后,更新temp[j]的值即可。 
注意当 temp[j]=0时 dp[(j+a[i])%m]=temp[j]+1是不成立的(取模为j的子序列都没有),但是 j=0时成立. 
*/
#include<iostream>
using namespace std;

const int MAX_N=100005;
const int MAX_M=10000005;
int n,m;
int a[MAX_N];
//dp[i],temp[i]: 对m取模为 i 的最长子序列长度 
int dp[MAX_M];
int temp[MAX_N];

int main()
{
	ios::sync_with_stdio(false);
	cin>>n>>m;
	for(int i=1;i<=n;++i)
		cin>>a[i];
	for(int i=1;i<=n;++i)
	{
		for(int j=0;j<m;++j)
			if(j==0||temp[j])	dp[(j+a[i])%m]=temp[j]+1;
		for(int j=0;j<m;++j)
			temp[j]=max(temp[j],dp[j]);
	}
	cout<<dp[0]<<endl;
	return 0;
}



阅读更多

没有更多推荐了,返回首页