地址:http://poj.org/problem?id=3614
思路:
一,贪心+set : 对于所有的牛按照 minSPF 由大到小排序然后遍历,对于 牛a[i] 只要找到比a[i].max小的最大的SPF防晒乳即为最优解,因为取大的那么下一个a[i]可能用不到,而对于查找可以用set,再用一个数组记录每瓶防晒乳的个数即可。
二,贪心+优先队列: 将所有的牛a[n] 按照minSPF 由小到大排序,再由小到大遍历防晒乳di,将所有牛 a[i].minSPF小于等于di的牛的maxSPF加入优先队列Q(小的先出队列),这样就满足队列中的所有牛的minSPF一定小于等于 di,然后按照贪心取队列中大于di的最小值即可
Code 1:
#include<iostream>
#include<algorithm>
#include<set>
#include<cstring>
using namespace std;
struct node{
int l;
int r;
bool operator<(const node &p)const{
return l>p.l;
}
};
const int MAX_N=2505;
const int MAX_M=2505;
int n,m;
node a[MAX_N];
set<int> iset;
int d[MAX_M];
int main()
{
ios::sync_with_stdio(false);
while(cin>>n>>m){
memset(d,0,sizeof(d));
iset.clear();
for(int i=0;i<n;++i)
cin>>a[i].l>>a[i].r;
sort(a,a+n);
int x,t;
for(int i=0;i<m;++i)
{
cin>>x>>t;
iset.insert(x);
d[x]+=t;
}
int ans=0;
for(int i=0;i<n;++i)
{
set<int>::iterator k=iset.lower_bound(a[i].r+1);
if(k!=iset.begin()){
--k;
if(a[i].l<=*k){
++ans; --d[*k];
if(!d[*k]) iset.erase(k);
}
}
}
cout<<ans<<endl;
}
return 0;
}
Code 2:
//贪心+优先队列
#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;
struct node{
int l;
int r;
bool operator<(const node &p)const{
return l<p.l;
}
};
const int MAX_N=2505;
const int MAX_M=2505;
int n,m;
node a[MAX_N];
int d[MAX_M];
int main()
{
ios::sync_with_stdio(false);
while(cin>>n>>m){
memset(d,0,sizeof(d));
for(int i=0;i<n;++i)
cin>>a[i].l>>a[i].r;
sort(a,a+n);
int x,t;
for(int i=0;i<m;++i)
{
cin>>x>>t;
d[x]+=t;
}
int ans=0;
priority_queue<int,vector<int>,greater<int> > Q;
for(int i=1,l=0;i<MAX_M;++i)
for(int k=0;k<d[i];++k)
{
while(a[l].l<=i){
Q.push(a[l++].r);
}
while(!Q.empty()&&Q.top()<i){
Q.pop();
}
if(!Q.empty()){
++ans; Q.pop();
}
}
cout<<ans<<endl;
}
return 0;
}