【题目描述】
一个迷宫由R行C列格子组成,有的格子里有障碍物,不能走;有的格子是空地,可以走。
给定一个迷宫,求从左上角走到右下角最少需要走多少步(数据保证一定能走到)。只能在水平方向或垂直方向走,不能斜着走。
【输入】
第一行是两个整数,R和C,代表迷宫的长和宽。( 1≤ R,C ≤ 40)
接下来是R行,每行C个字符,代表整个迷宫。
空地格子用‘.’表示,有障碍物的格子用‘#’表示。
迷宫左上角和右下角都是‘.’。
【输出】
输出从左上角走到右下角至少要经过多少步(即至少要经过多少个空地格子)。计算步数要包括起点和终点。
【输入样例】
5 5 ..### #.... #.#.# #.#.# #.#..
【输出样例】
9
//Created on 2020/2/8
/*#include <iostream>
#include <cstdio>*/
#include <bits/stdc++.h>
using namespace std;
const int idata=1000+5;
char maps[idata][idata];
int judge[idata][idata];
int change[4][2]={{1,0},{-1,0},
{0,1},{0,-1}};
int nx,ny;
int x[idata],y[idata];
int Count[idata][idata];
int soux,souy;
int exitx,exity;
bool flag;
int m,n;
int main()
{
int i,j;
int tail=1,head=0;
cin>>m>>n;
for(i=1;i<=m;i++)
{
for(j=1;j<=n;j++)
{
cin>>maps[i][j];
if(maps[i][j]=='#')
judge[i][j]=1;
}
}
judge[1][1]=1;
Count[1][1]=1;
x[1]=1,y[1]=1;
while(head<tail)
{
head++;
for(i=0;i<4;i++)
{
nx=x[head]+change[i][0];
ny=y[head]+change[i][1];
if(nx>=1&&nx<=m&&ny>=1&&ny<=n
&&!judge[nx][ny])
{
judge[nx][ny]=1;
tail++;
x[tail]=nx;
y[tail]=ny;
Count[x[tail]][y[tail]]=Count[x[head]][y[head]]+1;
if(nx==m&&ny==n)
{
flag=1;
break;
}
}
}
if(flag) break;
}
cout<<Count[m][n]<<endl;
return 0;
}