大一下数学模型学习笔记

本课程重点:模型的建立和结果的分析、广浅新

1.matlab入门知识

1.1matlab环境

在这里插入图片描述
%:注释
在这里插入图片描述


pi%内部是64位双精度
Row = [1,2.2,3,4,5]%行向量
Col = [1;2;3;4;5]%列向量

size(Row)%大小:15size(Col)
length(Row)%只显示元素个数

M = [1 2;3 4]%矩阵

save variable%保存变量(load+文件名加载)

clear Row %清除变量
clear%全部清楚

1.2数组与函数

%计算抛物线y = 2x^230个点的计算
a = linspace(-1,1,30);
b = 2*a.^2
%如何创建组变量
x = 1:2:9
y = 0:-1:-5
m=3;
n=4;
l = linspace(0,pi,11)
z = zeros(m,n)
o = ones(m,n)
e = eye(n)%n阶单位矩阵
r = rand(m,n)%m行n列的均匀分布随机数矩阵
rn = randn(m,n)%m行n列的正态分布随机数矩阵
d = diag(x)%以一维数组x位对角线元素的对角阵

z =

     0     0     0     0
     0     0     0     0
     0     0     0     0


o =

     1     1     1     1
     1     1     1     1
     1     1     1     1


e =

     1     0     0     0
     0     1     0     0
     0     0     1     0
     0     0     0     1


r =

    0.8147    0.9134    0.2785    0.9649
    0.9058    0.6324    0.5469    0.1576
    0.1270    0.0975    0.9575    0.9706


rn =

    0.7254   -0.2050    1.4090   -1.2075
   -0.0631   -0.1241    1.4172    0.7172
    0.7147    1.4897    0.6715    1.6302


d =

     1     0     0     0     0
     0     3     0     0     0
     0     0     5     0     0
     0     0     0     7     0
     0     0     0     0     9


%数组的下标操作
u = [1:3;4:6;7:9]
v = u(:,[1,3])
w = u(2:3,1:2)
u(4,:)=[10:12]
u(:,4)=[1;1;1;1]
u(2:3,:) = []
>> grammer

u =

     1     2     3
     4     5     6
     7     8     9


v =

     1     3
     4     6
     7     9


w =

     4     5
     7     8


u =

     1     2     3
     4     5     6
     7     8     9
    10    11    12


u =

     1     2     3     1
     4     5     6     1
     7     8     9     1
    10    11    12     1


u =

     1     2     3     1
    10    11    12     1

>> 

%矩阵的拼接
D = [2*eye(2),zeros(2,1)]
E = [D;eye(2),zeors(2,1)]
>> grammer

D =

     2     0     0
     0     2     0


E =

     2     0     0
     0     2     0
     1     0     0
     0     1     0

>> 

在这里插入图片描述

%数组的运算
a = [1:3;4:6];
b = [11:13;14:16];
c=2;

A = a.*b
B = a*c

C = a./b

D=  a.^c
E = c.^a%[c^a11 c^a12...]
F = a.^b%[a1^b11 a2^b12...]

>> grammer

A =

    11    24    39
    56    75    96


B =

     2     4     6
     8    10    12


C =

    0.0909    0.1667    0.2308
    0.2857    0.3333    0.3750


D =

     1     4     9
    16    25    36


E =

     2     4     8
    16    32    64


F =

   1.0e+12 *

    0.0000    0.0000    0.0000
    0.0003    0.0305    2.8211

>> 

1.3二维绘图

%二维绘图
x = linspace(0,2*pi,30);
y = [sin(x);cos(x)];
plot(x,y)

在这里插入图片描述

plot(x,y,'o')

在这里插入图片描述

  • hold on(hold off)
%二维绘图
x = linspace(0,2*pi,30);
y = [sin(x);cos(x)];plot(x,y,'k');
hold on %在同一坐标下画多条曲线或离散点
r = (rand(size(x))-0.5)*0.2;
y2 = sin(x)+r;
plot(x,y2,'bo')
hold off

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


子图:subplot(m,n,p)

%子图subplot(m,n,p)

x=0:0.1:4*pi;
subplot(2,2,1);
plot(x,sin(x));title('y=sin(x)')
subplot(2,2,4);
plot(x,sin(x).*exp(-x/5));title('y=sin(x)exp(x)')

在这里插入图片描述

1.4三维绘图

在这里插入图片描述


%三维绘图
t=0:pi/50:pi*10;
plot3(sin(t),cos(t),t)
axis([-1.7 1.7 -1.5 1.5 10 60])
grid on%grid off

在这里插入图片描述


%三维绘图
%绘制曲面
x=-4:4;
y=x;
[X,Y] = meshgrid(x,y);%生成x-y坐标的”格点“矩阵
Z = X.^2 + Y.^2;
surf(X,Y,Z)

在这里插入图片描述


%三维绘图
%绘制曲面
x=-4:4;
y=x;
[X,Y] = meshgrid(x,y);%生成x-y坐标的”格点“矩阵
Z = X.^2 + Y.^2;
surf(X,Y,Z);
hold on
colormap(hot)
stem3(X,Y,Z,'bo')%用来表现在格点上计算函数值
hold off

在这里插入图片描述

rotate3d -->3d旋转

%三维绘图
%绘制曲面
x=-4:4;
y=x;
[X,Y] = meshgrid(x,y);%生成x-y坐标的”格点“矩阵
Z = X.^2 + Y.^2;
surf(X,Y,Z);
rotate3d
figure(2)
meshz(X,Y,Z);
rotate3d
hold on
colormap(hot)
stem3(X,Y,Z,'bo')%用来表现在格点上计算函数值
hold off

在这里插入图片描述

在这里插入图片描述


在这里插入图片描述

模型类型

- 优化模型 (最优化模型)

x~决策变量
f(x)~目标变量
gi(x)~约束条件

  1. 线性规划(LP)

目标和约束均为线性函数

  • 0-1规划模型

M a x ∑ n = 1 N a n Max \sum_{n=1}^N a_n Maxn=1Nan

  • 网络优化模型-最小费用最大流
  • 拟合问题

R(t)经验公式
①机理分析
②测试分析(数据建模)


①最小二乘准则

  1. 线性插值
    2.样条插值⭐

线性拟合(线性最小二乘法)
1. f ( x ) = a 1 r 1 ( x ) + . . . + a n r n ( x ) ( r i ( x ) 已 知 , 系 数 待 定 ) f(x) = a_1r_1(x)+...+a_nr_n(x)(r_i(x)已知,系数待定) f(x)=a1r1(x)+...+anrn(x)(ri(x),)
2.以最小二乘准则确定a1,a2…an —>多元函数求极值(即使n个点(xi,yi)处的yi与f(xi)的差的平方和最小)—>非齐次线性方程组
∂ J ∂ a 1 = 0 ∂ J ∂ a 2 = 0 . . . ∂ J ∂ a n = 0 \frac{\partial J}{\partial a_1} = 0\\ \frac{\partial J}{\partial a_2} = 0\\ .\\ .\\ .\\ \frac{\partial J}{\partial a_n} = 0 a1J=0a2J=0...anJ=0

6

  1. 非线性规划(NLP)

目标或约束中存在非线性函数

  • 二次规划
  1. 整数规划
Max = 2*x1 + 3*x2 + 4*x3;
1.5*x1 + 3* x2 + 5 * x3 < 600 ;
280*x1 + 250 * x2 +400 *x3 < 60200;
@gin(x1);@gin(x2);@gin(x3);#表示整数

决策变量(全部或部分)为整数

  1. 多目标规划

  2. 分式规划、动态规划、双层规划、模糊规划、随机规划

- 微分模型

- 离散模型

- 数理统计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值