极限求法总结(五)

利用级数收敛的必要条件

这种方法利用的是级数收敛的必要条件,即“如果级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}{u_n} n=1un收敛,那么它的通项 u n u_n un趋向于0”。所以当你求收敛级数通项的极限时,可以考虑先证明这个无穷级数收敛,然后就可以得到通项趋于 0. 举一个例子:
**例一:**求极限 lim ⁡ n → ∞ 2 n ∗ n ! n n \lim_{n\rightarrow\infty}\frac{2^n*n!}{n ^n} limnnn2nn!.
因为这里有三类函数, 我们尝试判别正项无穷级数 lim ⁡ n → ∞ 2 n ∗ n ! n n \lim_{n\rightarrow\infty}\frac{2^n*n!}{n ^n} limnnn2nn!的敛散性——这里可以用达朗贝尔判别法(只要通项的后一项和前一项的比值的极限小于1,正项级数就收敛).
设通项 u n u_n un= 2 n ∗ n n n \frac{2^n*n}{n ^n} nn2nn,那么就有:
lim ⁡ n → ∞ u n + 1 u n \lim_{n\rightarrow\infty}\frac{u_{n+1}}{u_n} limnunun+1= lim ⁡ n → ∞ 2 n + 1 ∗ ( n + 1 ) ! ( n + 1 ) n + 1 2 n ∗ n ! n n \lim_{n\rightarrow\infty}\frac{\frac{2^{n+1} *(n+1)!}{{(n+1)} ^{n+1}}}{\frac{2 ^n*n!}{n ^n}} limnnn2nn!(n+1)n+12n+1(n+1)!= lim ⁡ n → ∞ 2 n + 1 ∗ ( n + 1 ) ! ( n + 1 ) n + 1 \lim_{n\rightarrow\infty}\frac{2^{n+1}*(n+1)!}{(n+1) ^{n+1}} limn(n+1)n+12n+1(n+1)! n n 2 n ∗ n ! \frac{n^n}{2 ^n*n!} 2nn!nn → \rightarrow lim ⁡ n → ∞ 2 ∗ n n ( n + 1 ) n \lim_{n\rightarrow\infty}\frac{2*n^n}{{(n+1)} ^n} limn(n+1)n2nn= lim ⁡ n → ∞ 2 ( 1 + 1 n ) n \lim_{n\rightarrow\infty}\frac{2}{{(1+\frac{1}{n})} ^n} limn(1+n1)n2= 2 e \frac{2}{e} e2<1.

由达朗贝尔判别法可以知道,正项级数 lim ⁡ n → ∞ 2 n ∗ n ! n n \lim_{n\rightarrow\infty}\frac{2^n*n!}{n ^n} limnnn2nn!收敛,所以通项趋向于0。即 lim ⁡ n → ∞ 2 n ∗ n ! n n \lim_{n\rightarrow\infty}\frac{2^n*n!}{n ^n} limnnn2nn!=0.
当然,如果你判断出一个无穷级数是发散的,那么你得不出任何结论. 在计算数列极限感觉走投无路的时候,可以试试这种方法. 当然,一定要熟练掌握各种无穷级数的相关知识,才能按题目需要去选择合适的审敛法.

利用级数求和的方法

级数的和本身就是用极限定义的. 因此,有些极限可以借助级数的工具进行 计算,最常见的即为幂级数与傅里叶级数。这里主要讲解幂级数求和。
幂级数有两条性质,即逐项可导性与逐项可积性,这可以帮助我们方便地求 出幂级数的和函数,把收敛域内的点代入就可以求得一些数项级数的和.
**例二:**求极限 lim ⁡ n → ∞ ∑ i = 1 n i 2 i \lim_{n\rightarrow\infty}\sum_{i=1}^{n}{\frac{i}{2 ^i}} limni=1n2ii.
方法一:这其实就是在求级数 ∑ n = 1 ∞ n 2 n \sum_{n=1}^{\infty}{\frac{n}{2 ^n}} n=12nn的和,为此,我们可以构造幂级数 ∑ n = 1 ∞ n x n \sum_{n=1}^{\infty}{nx ^n} n=1nxn.欲求此幂级数的和函数,可作如下变形:
当x ≠ \neq = 0时, ∑ n = 1 ∞ n x n \sum_{n=1}^{\infty}{nx ^n} n=1nxn=x ∑ n = 1 ∞ n x n − 1 \sum_{n=1}^{\infty}{nx ^{n-1}} n=1nxn1=x( ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}{x ^n} n=1xn)’=x( x 1 − x \frac{x}{1-x} 1xx)’= x ( 1 − x ) 2 \frac{x}{{(1-x)}^2} (1x)2x,当x=0时,根据和函数的连续性可知和为0,并且不难求得此幂级数的收敛域为(-1,1).于是当我们把x= 1 2 \frac{1}{2} 21(在收敛域里)代入此幂级数,就可以知道 ∑ n = 1 ∞ n 2 n \sum_{n=1}^{\infty}{\frac{n}{2 ^n}} n=12nn= 1 2 ( 1 − 1 2 ) 2 \frac{\frac{1}{2}}{{(1-\frac{1}{2})}^2} (121)221=2.从而 lim ⁡ n → ∞ ∑ i = 1 n i 2 i \lim_{n\rightarrow\infty}\sum_{i=1}^{n}{\frac{i}{2 ^i}} limni=1n2ii=2.

对于这道题,由于它的通项属于“等差乘等比”型的,所以我们也可以用高中学过的所谓“错位相减法”先来求级数的前n项部分和,然后再取极限.
方法二:对于数列 a n a_n an= n 2 n \frac{n}{2^n} 2nn,我们先用错位相减法求其前n项部分和。前n项部分和 S n S_n Sn= 1 2 1 \frac{1}{2^1} 211+ 2 2 2 \frac{2}{2^2} 222+ 3 2 3 \frac{3}{2^3} 233+ ⋯ \cdots + n 2 n \frac{n}{2^n} 2nn
1 2 \frac{1}{2} 21 S n S_n Sn= 1 2 2 \frac{1}{2^2} 221+ 2 2 3 \frac{2}{2^3} 232+ 3 2 4 \frac{3}{2^4} 243+ ⋯ \cdots + n 2 n + 1 \frac{n}{2^{n+1}} 2n+1n
①-②,有 1 2 \frac{1}{2} 21 S n S_n Sn= 1 2 2 \frac{1}{2^2} 221+ 1 2 2 \frac{1}{2^2} 221+ 1 2 3 \frac{1}{2^3} 231+ ⋯ \cdots + 1 2 n \frac{1}{2^n} 2n1- n 2 n + 1 \frac{n}{2^{n+1}} 2n+1n= 1 2 ( 1 − 1 2 n ) 1 − 1 2 \frac{\frac{1}{2}{(1-\frac{1}{2^n})}}{1-\frac{1}{2}} 12121(12n1)- n 2 n + 1 \frac{n}{2^{n+1}} 2n+1n=1- n + 2 2 n + 1 \frac{n+2}{2^{n+1}} 2n+1n+2,
因此, S n S_n Sn= ∑ i = 1 n i 2 i \sum_{i=1}^{n}{\frac{i}{2 ^i}} i=1n2ii=2 ( 1 − n + 2 2 n + 1 (1-\frac{n+2}{2^{n+1}} (12n+1n+2)=2- n + 2 2 n \frac{n+2}{2^n} 2nn+2. 再取极限得 lim ⁡ n → ∞ ∑ i = 1 n i 2 i \lim_{n\rightarrow\infty}\sum_{i=1}^{n}{\frac{i}{2 ^i}} limni=1n2ii= lim ⁡ n → ∞ ( 2 − n + 2 2 n ) \lim_{n\rightarrow\infty}(2-\frac{n+2}{2^n}) limn(22nn+2)=2.
除了上面介绍的这种可以利用“逐项可导”或“逐项可积”性质计算和函数的幂级数,还有一类幂函数,如指数函数、三角函数等函数的幂级数,它们的展 开式中含有阶乘,不便于使用“逐项可导”或“逐项可积”的性质. 这时可以通 过对恒等变形等手段,利用已知的麦克劳林级数(即x=0处的幂级数)或一般 幂级数展开式直接获得答案.
**例三:**计算极限 lim ⁡ x → 0 \lim_{x\rightarrow 0} limx0 ∑ n = 1 ∞ 2 n ∗ x 2 n + 1 ( 2 n + 1 ) n ! l n ( 1 + x 3 ) \frac{\sum_{n=1}^{\infty}{\frac{2 ^n*x ^{2n+1}}{(2n+1)n!}}}{ln(1+x ^3)} ln(1+x3)n=1(2n+1)n!2nx2n+1
见到分母这种形式,先等价无穷小替换:原极限= lim ⁡ x → 0 \lim_{x\rightarrow 0} limx0 ∑ n = 1 ∞ 2 n ∗ x 2 n + 1 ( 2 n + 1 ) n ! x 3 \frac{\sum_{n=1}^{\infty}{\frac{2 ^n*x ^{2n+1}}{(2n+1)n!}}}{x ^3} x3n=1(2n+1)n!2nx2n+1.
如果想求出式中级数的和函数,应当先逐项求导,再逐项积分. 但由于后续 步骤中要使用洛必达法则,所以又要再次求导,因此不妨直接使用洛必达法则.
原极限= lim ⁡ x → 0 \lim_{x\rightarrow 0} limx0 ∑ n = 1 ∞ 2 n ∗ x 2 n + 1 ( 2 n + 1 ) n ! x 3 \frac{\sum_{n=1}^{\infty}{\frac{2 ^n*x ^{2n+1}}{(2n+1)n!}}}{x ^3} x3n=1(2n+1)n!2nx2n+1= lim ⁡ x → 0 \lim_{x\rightarrow 0} limx0 ∑ n = 1 ∞ 2 n ∗ x 2 n n ! 3 x 2 \frac{\sum_{n=1}^{\infty}{\frac{2 ^n*x ^{2n}}{n!}}}{3x ^2} 3x2n=1n!2nx2n= lim ⁡ x → 0 \lim_{x\rightarrow 0} limx0 ∑ n = 1 ∞ ( 2 x 2 ) n n ! 3 x 2 \frac{\sum_{n=1}^{\infty}{\frac{{(2x ^2)} ^n}{n!}}}{3x ^2} 3x2n=1n!(2x2)n= lim ⁡ x → 0 \lim_{x\rightarrow 0} limx0 ∑ n = 1 ∞ ( 2 x 2 ) n n ! − 1 3 x 2 \frac{\sum_{n=1}^{\infty}{\frac{{{(2x ^2)} ^n}}{n!}-1}}{3x ^2} 3x2n=1n!(2x2)n1= lim ⁡ x → 0 \lim_{x\rightarrow 0} limx0 e 2 x 2 − 1 3 x 2 \frac{e^{2x ^2}-1}{3x ^2} 3x2e2x21= lim ⁡ x → 0 \lim_{x\rightarrow 0} limx0 2 x 2 3 x 2 \frac{{2x ^2}}{3x ^2} 3x22x2= 2 3 \frac{2}{3} 32.

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值