算法最优化(2)线性规划问题中的常见概念辨析:可行解,最优解,基,基向量,非基向量,基变量,非基变量等等

本文深入探讨线性规划中的核心概念,包括标准型、可行解、最优解、基解等,解析基变量与非基变量的区别,以及奇异矩阵与非奇异矩阵对线性方程组解的影响,帮助读者理解线性规划的基础知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性规划里面有很多基本的概念容易弄混

已知标准型为:
max Z=CX
AX=b
X≥0

可行解:满足约束条件,AX=b,X≥0的解X称为线性规划问题的可行解。
最优解:使目标函数Z=CX达到最大值的可行解称为最优解。
基,基向量,非基向量,基变量,非基变量
在这里插入图片描述
基本解(又叫做基解,基础解):若在约束方程组系数矩阵中找到一个基,令其非基变量为零,再求解该m元线性方程组可得到唯一解,该解称之为线性规划的基本解。
基解,基可行解,可行基
在这里插入图片描述

所以需要注意的是基本解不一定是可行解,非负的基解才是可行解

奇异矩阵和非奇异矩阵:有时候我们还会听到奇异矩阵和非奇异矩阵这两个概念,首先明确肯定要明确的是,奇异矩阵和非奇异矩阵都是方阵(行列数相同)。如果矩阵A对应的行列式|A|为零,那么这个矩阵A就是奇异矩阵。如果矩阵A对应的行列式≠0,那么他就是非奇异矩阵
关于奇异阵,非奇异阵,可逆和线性方程组的解的关系,总结一下就是
(1)A为非奇异矩阵,则|A| ≠ 0 → A是可逆矩阵 → AX=0只有唯一零解 或 AX=b有唯一解
(2)A为奇异矩阵,则|A| = 0 → A是不可逆矩阵 → AX=0有非零解 或 AX=b有无穷解或者无解
最优解的特点
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值