【深度学习|地学应用】LiDAR(Light Detection and Ranging)数据详解

【深度学习|地学应用】LiDAR(Light Detection and Ranging)数据详解

【深度学习|地学应用】LiDAR(Light Detection and Ranging)数据详解



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://fighting.blog.csdn.net/article/details/147527145


前言

  • LiDAR(Light Detection and Ranging)是一种利用激光脉冲测距来获取地物三维点云的高精度测绘技术。
  • 它既能穿透植被获取地形高程,又能反映建筑、植被与地表结构,被广泛应用于地形测绘、林业监测、城市规划、考古发掘和自动驾驶等领域。
  • 下面先从 LiDAR 数据的获取与处理流程做简要介绍,再罗列常用的开源和商业软件,最后给出 Python 示例代码,帮助快速上手点云处理。

起源与发展

初期概念与军事应用

  • 1930年,E. H. Synge 提出“用强大聚光灯探测大气”理念,为后来的 colidar(coherent light
    detecting and ranging)奠基。
  • 1961年,Hughes Aircraft 推出首个 colidar 原型,用于卫星跟踪(“Colidar Mark II”激光测距仪,射程11 km,精度4.5 m)。
  • 1971年,RCA 的激光高度计随阿波罗15号登陆月球,首次展示太空测高能力。

商用与科研扩展

  • 1970–80年代,LiDAR在气象测量和地形制图中铺开,NCAR用于云层和大气监测。
  • 2000年,德克萨斯大学团队(NCALM)制作全球首个考古 LiDAR 高程模型,开辟密林下文物探测新领域。

LiDAR 数据获取与处理

不同平台数据获取

  • 机载 LiDAR:固定翼飞机或直升机搭载,适合大范围高程与森林监测。
  • 地面激光扫描(TLS):静态三维扫描仪,用于桥梁、隧道等精细建模。
  • 移动 LiDAR:车载或背包式系统,适合道路、管线与城市街景采集。
  • 无人机 LiDAR:UAV 携载,灵活机动,覆盖小区域高分辨率航测。

核心组件

  • 激光发射器:产生短脉冲或连续波激光;波长常见 905 nm 与 1550 nm。
  • 回波检测器:测量激光返回时间与强度。
  • GNSS/IMU:提供实时位置与姿态,用于精确地理配准。

预处理

  • 点云配准:利用 GNSS/IMU 数据或基于特征的配准算法,将多航线或多视角数据对齐。
  • 去噪滤波:剔除由云雾、飞行抖动等引入的异常点。
  • 坐标转换:将激光测距时间转换为 XYZ 三维坐标,并投影到地图参考坐标系。

点云分类与分割

  • 地面/非地面分离:根据高度和局部平面特征识别地面点,生成数字高程模型(DEM)。
  • 植被/建筑物提取:基于回波强度、多回波信息或机器学习算法,对点云进行语义分类。

衍生产品生成

  • 数字高程/表面模型(DEM/DSM):DEM 仅保留裸地高程;DSM 包含地物顶面高度。
  • 点云特征提取:构建坡度、曲率、植被高度、林分冠层宽度等衍生变量。

数据处理流程

  • 原始点云生成:将脉冲时间转换为距离,合成 3D 点位。
  • 去噪与滤波:剔除飞行器振动和云雾噪声。
  • 点云配准与拼接:多次航线或视角间对齐。
  • 分类与分割:利用高度、回波强度或机器学习将地面、植被、建筑分离。
  • 数字高程/表面模型:从已分类点云提取 DEM/DSM/DTM。

常用 LiDAR 数据处理软件

软件名称类型主要功能备注
PDAL开源库点云读取/写入、滤波、配准、转换、管道化处理命令行 & Python 绑定 turn0search0
LAStools半开源工具集LAS/LAZ 格式转换、噪声移除、分类、DEM 生成高速 C++ 实现
CloudCompare开源桌面应用可视化、配准、分割、点云与网格距离计算、统计分析跨平台 GUI
Open3D开源库点云/网格操作、可视化、重建算法、深度学习接口Python/C++
TerraScan商业软件点云分类、地面提取、管线建模、体积计算与 MicroStation 集成
Terrasolid商业插件套件机载/地面 LiDAR 专业处理,支持 Bentley 产品高级建模与分析
LP360商业插件ArcGIS 平台点云可视化、编辑、分析集成 ESRI
FME商业 ETL 工具点云转换、过滤、空间分析、工作流自动化支持多种数据源

Python 示例:用 PDAL 和 Open3D 处理 LiDAR 点云

1. 用 PDAL 读取、滤波并写入

import pdal
import json

# 定义 PDAL 管道:读取 LAS、应用统计滤波、写出 LAZ
pipeline = {
    "pipeline": [
        "input.las",
        {
            "type": "filters.outlier",
            "method": "statistical",
            "mean_k": 8,
            "multiplier": 2.5
        },
        "output.laz"
    ]
}

# 执行
p = pdal.Pipeline(json.dumps(pipeline))
p.execute()
metadata = p.metadata
print(metadata)

2. 用 Open3D 可视化并地面分割

import open3d as o3d
import numpy as np

# 读取点云
pcd = o3d.io.read_point_cloud("input.las")

# 可视化
o3d.visualization.draw_geometries([pcd], window_name="原始点云")

# 地面分割:基于 RANSAC 平面拟合
plane_model, inliers = pcd.segment_plane(distance_threshold=0.2,
                                         ransac_n=3,
                                         num_iterations=1000)
ground = pcd.select_by_index(inliers)
nonground = pcd.select_by_index(inliers, invert=True)

ground.paint_uniform_color([0, 1, 0])      # 地面:绿色
nonground.paint_uniform_color([1, 0, 0])   # 非地面:红色

# 可视化分割结果
o3d.visualization.draw_geometries([ground, nonground],
                                  window_name="地面/非地面分割")

主要应用领域

  • 地形测绘与地质调查:高精度地形模型辅助洪水风险与滑坡监测。
  • 林业与生态监测:估算林分高度、密度及碳存储。
  • 城市与基础设施规划:三维建模、日照分析与智慧城市资产管理。
  • 考古学:揭示植被覆盖下的古代遗迹,如玛雅城市、亚马逊古城。
  • 自动驾驶与机器人:实时环境感知与避障。

优缺点分析

优点

  • 高精度与高分辨率:厘米级精度,直接测高,无需光学匹配。
  • 穿透植被:多回波能力揭示地面、植被层次结构。
  • 全天候:不受可见光照限制,夜间或阴天皆可作业。

缺点

  • 成本高昂:设备与运营费用大,数据存储与处理要求高。
  • 气象依赖:雨、雪、雾等降低回波信号质量。
  • 数据体量大:复杂点云处理和长周期存档挑战存储和计算资源。

未来趋势

  • 多波长与全波形LiDAR:捕获更丰富的光学信息与散射特性。
  • 小型化与低成本传感:助力UAV与地面机器人普及化。
  • 云端与AI驱动处理:借助深度学习实现自动化分类、语义分割与快速可视化。
  • 多传感器融合:与光学、雷达SAR、摄像头等数据整合,提升智能感知与分析能力。

通过上述介绍与示例,可以迅速了解 LiDAR 数据的获取、处理流程,以及常用的开源和商业软件工具,并用 Python 代码完成点云的读取、滤波、分割和可视化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值