- 对应简单图的度序列,在同构意义下可能不止一个
- 简单图的度序列最大度一定要小于等于n-1
- 只要和为偶数就是图的度序列
- 若图中两点u与v间存在途径,则u与v间存在路
- 若过点u存在闭迹,则过点u存在圈
- 一个图是偶图当且仅当它不包含奇圈
- 无向图的顶点之间的连通关系一定是等价关系
- 有向图的顶点之间的单向连通关系不是等价关系
- 一个简单图G的n个点的度不能互不相同
- 无向图的邻接矩阵的行和对应顶点的度数
- 无向图的邻接矩阵的所有元素之和等于边数的2倍
- 无向图的邻接矩阵的平方的对角线元素等于对应顶点的度数
- 无向图的邻接矩阵的平方的对角线元素之和等于边数的2倍
- 无向图的邻接矩阵的特征值的平方和等于边数的2倍
- 若G是非连通的,则邻接矩阵相似于某个对角矩阵
- 树一定是连通无圈图
- 树G无环且任意两点之间存在唯一的路
- 树无回路但任意添加一条边后有回路
- 回路是边不重的圈的并
- 若一个闭迹不是圈,那么它一定是边不重的圈的并。
- n阶树T的形心由一个点或两个相邻点组成。
- 若T只有一个形心,则形心的权小于n/2
- 若T有两个形心,则形心的权等于n/2
- 树T的对偶图全是环
- G是极大平面图的充要条件各面的次数均为3且为连通图
每个n方体都有完美匹配
由n方体的构造知:n方体有2n个顶点,每个顶点可以用长度为n的二进制码来表示,两个顶点连线当且仅当代表两个顶点的二进制码只有一位坐标不同。
划分顶点,把坐标之和为偶数的顶点归入X,否则归入Y。
X中顶点互不邻接,Y中顶点也如此。所以n方体是偶图。
很容易验证n方体的每个顶点度数为n,所以n方体是n正则偶图。因此,n方体存在完美匹配。
树T有完美匹配当且仅当对所有顶点v∈T,o(T-v)=1
必要性:树T有完美匹配,由Tutte定理知o(T-v)≤|{v}|=1
显然T是偶数阶的图,o(T-v)≥1.因此o(T‒v)=1。
充分性:对于T的任意顶点v,假设Tv是T-v仅有的奇分支,且Tv与v之间的边为uv。显然u∈Tv。对于顶点u,连接u与Tu的边也是uv。
因此,对于任意的顶点w,按照上述方式可以找到唯一的一个顶点与之配对,因为o(T‒v)=1,所以T具有偶数个顶点,从而T的所有顶点都可以两两配对。
匈牙利算法
求偶图的最大匹配
先任取一个匹配M,然后寻找M可扩路。若不存在M可扩路,则M为最大匹;若存在,则将可扩路中M与非M中的边互换,得到一个比M多一条边的匹配M’,再对M’重复上面过程。
算法是从X的每个非饱和顶点寻找M可扩路,若从X的每个非饱和点出发都无M可扩路,则M无可扩路,从而M是最大匹配。
若G是k正则偶图,则G有完美匹配