图论知识点总结

  • 对应简单图的度序列,在同构意义下可能不止一个
  • 简单图的度序列最大度一定要小于等于n-1
  • 只要和为偶数就是图的度序列
  • 若图中两点u与v间存在途径,则u与v间存在路
  • 若过点u存在闭迹,则过点u存在圈
  • 一个图是偶图当且仅当它不包含奇圈
  • 无向图的顶点之间的连通关系一定是等价关系
  • 有向图的顶点之间的单向连通关系不是等价关系
  • 一个简单图G的n个点的度不能互不相同
  • 无向图的邻接矩阵的行和对应顶点的度数
  • 无向图的邻接矩阵的所有元素之和等于边数的2倍
  • 无向图的邻接矩阵的平方的对角线元素等于对应顶点的度数
  • 无向图的邻接矩阵的平方的对角线元素之和等于边数的2倍
  • 无向图的邻接矩阵的特征值的平方和等于边数的2倍
  • 若G是非连通的,则邻接矩阵相似于某个对角矩阵
  • 树一定是连通无圈图
  • 树G无环且任意两点之间存在唯一的路
  • 树无回路但任意添加一条边后有回路
  • 回路是边不重的圈的并
  • 若一个闭迹不是圈,那么它一定是边不重的圈的并。
  • n阶树T的形心由一个点或两个相邻点组成。
  • 若T只有一个形心,则形心的权小于n/2
  • 若T有两个形心,则形心的权等于n/2
  • 树T的对偶图全是环
  • G是极大平面图的充要条件各面的次数均为3且为连通图

每个n方体都有完美匹配
由n方体的构造知:n方体有2n个顶点,每个顶点可以用长度为n的二进制码来表示,两个顶点连线当且仅当代表两个顶点的二进制码只有一位坐标不同。
划分顶点,把坐标之和为偶数的顶点归入X,否则归入Y。
X中顶点互不邻接,Y中顶点也如此。所以n方体是偶图。
很容易验证n方体的每个顶点度数为n,所以n方体是n正则偶图。因此,n方体存在完美匹配。

树T有完美匹配当且仅当对所有顶点v∈T,o(T-v)=1
必要性:树T有完美匹配,由Tutte定理知o(T-v)≤|{v}|=1
显然T是偶数阶的图,o(T-v)≥1.因此o(T‒v)=1。
充分性:对于T的任意顶点v,假设Tv是T-v仅有的奇分支,且Tv与v之间的边为uv。显然u∈Tv。对于顶点u,连接u与Tu的边也是uv。
因此,对于任意的顶点w,按照上述方式可以找到唯一的一个顶点与之配对,因为o(T‒v)=1,所以T具有偶数个顶点,从而T的所有顶点都可以两两配对。

匈牙利算法
求偶图的最大匹配
先任取一个匹配M,然后寻找M可扩路。若不存在M可扩路,则M为最大匹;若存在,则将可扩路中M与非M中的边互换,得到一个比M多一条边的匹配M’,再对M’重复上面过程。

算法是从X的每个非饱和顶点寻找M可扩路,若从X的每个非饱和点出发都无M可扩路,则M无可扩路,从而M是最大匹配。

若G是k正则偶图,则G有完美匹配

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

饼干饼干圆又圆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值