几何光学学习笔记(4)- 2.2 单个折射球面的各种成像倍率以及拉赫不变量
1.垂轴倍率b
垂轴小线段通过单个球面成像。
由三角形相似可得:
− y ′ y = l ′ − r − l + r {- {{y'}\over{y}}}={{l'-r}\over{-l+r}} −yy′=−l+rl′−r
垂轴倍率:
b
=
y
′
y
=
l
′
−
r
l
−
r
=
n
l
′
n
′
l
b={y' \over y}={{l'-r}\over{l-r}}={{nl'}\over{n'l}}
b=yy′=l−rl′−r=n′lnl′
当求出轴上一对共辄点的截距 l和 l’ 以后,可以用上式求得通过该共辄点的一对共辄面上的垂轴倍率。若 b<0表示成倒像,则 b>0 时成正像。由上式可知,垂轴倍率仅决定于共辄面的位置,在一对共辄面上,倍率为常数,故像必和物相似。
当 b<0 时, l和 l’异号,表示物和像处于球面的两侧,像的虚实必须与物一致。当 b>0 时, l和 l’同号,表示物和像处于折射面的同侧,像的虚实与物相反。
当 Ibl >0 时,为放大像,即像比物大;当 Ibl <0,为缩小像。
2.轴向倍率a
于有一定体积的物体,除垂轴倍率外,其轴向也有尺寸,故还有一个轴向倍率。轴向倍率是指光轴土一对共辄点沿轴移动量之间的关系。如果物点沿轴移动一个微小距离 dl。相应地像移动 dl’ ,轴向倍率用希腊字母 α表示,定义为a = dl’ /dl。
a
=
d
l
d
l
′
=
n
l
′
2
n
′
l
2
=
n
′
n
b
2
a={{dl}\over{dl'}}={{nl'^2}\over{n'l^2}}={{n'}\over{n}}b^2
a=dl′dl=n′l2nl′2=nn′b2
如果物体是一个正立方体,则因垂轴倍率和轴向倍率的不一致,其像不再是正立方体。还可以看出,折射球面的轴向倍率恒为正值,这表示物点沿轴移动,其像点向同样的方向沿轴移动。
上式只能适用于 d很小的情况下。如果物点沿轴移动有限距离,如下图所示:
则此距离显然可以用物点移动的始末两A和B点表示。这时的轴向倍率
a
ˉ
\bar{a}
aˉ可表示为:
a
ˉ
=
l
2
′
−
l
1
′
l
2
−
l
1
=
n
′
n
b
1
b
2
\bar{a}= {{{l'_{2}}-{l'_{1}}}\over{l_{2}}-{l_{1}}}={{n'}\over{n}}b_{1}b_{2}
aˉ=l2−l1l2′−l1′=nn′b1b2
其中
b
1
和
b
2
b_{1}和b_{2}
b1和b2分别为
A
1
,
A
2
A_{1},A_{2}
A1,A2两对应点之间的垂轴放大率。
3.角倍率g
在近光轴以内,通过物点的光线经过折射后,必然通过相应的像点,这样一对共辄光线与光轴的夹角 u’和u 的比值即为角倍率,用希腊字母g表示为:
g
=
u
′
u
g={u'\over {u}}
g=uu′
利用关系式
l
u
=
l
′
u
′
lu=l'u'
lu=l′u′得:
g
=
l
l
′
g={l\over {l'}}
g=l′l
g = n n ′ ⋅ 1 b g={n\over {n'}}·{1\over {b}} g=n′n⋅b1
4.三个倍率间的关系
a g = n ′ n b 2 ⋅ n n ′ ⋅ 1 b = b ag= {{n'}\over{n}}b^2· {n\over {n'}}·{1\over {b}} =b ag=nn′b2⋅n′n⋅b1=b
5. 拉格朗日赫姆霍兹不变量(拉霍不变量)
在公式
b
=
y
′
y
=
n
l
′
n
′
l
b={y' \over y}={{nl'}\over{n'l}}
b=yy′=n′lnl′中,利用
g
=
l
l
′
=
u
′
u
g={l\over {l'}}={u'\over {u}}
g=l′l=uu′得:
n
u
y
=
n
′
u
′
y
′
=
J
nuy=n'u'y'=J
nuy=n′u′y′=J
此式称为拉格朗日报姆霍兹恒等式,简称拉赫公式。其表示为不变量形式,在一对共轭平面内,物高 y、孔径角 u和折射率 n乘积是一个常数,用 J表示。 J的单位应是 rad·mm,一般不给出单位,只给出数值,在具体运算中要考虑单位。