几何光学学习笔记(4)- 2.2 单个折射球面的各种成像倍率以及拉赫不变量

几何光学学习笔记(4)- 2.2 单个折射球面的各种成像倍率以及拉赫不变量

1.垂轴倍率b

垂轴小线段通过单个球面成像。
在这里插入图片描述
由三角形相似可得:

− y ′ y = l ′ − r − l + r {- {{y'}\over{y}}}={{l'-r}\over{-l+r}} yy=l+rlr

垂轴倍率:
b = y ′ y = l ′ − r l − r = n l ′ n ′ l b={y' \over y}={{l'-r}\over{l-r}}={{nl'}\over{n'l}} b=yy=lrlr=nlnl
当求出轴上一对共辄点的截距 l和 l’ 以后,可以用上式求得通过该共辄点的一对共辄面上的垂轴倍率。若 b<0表示成倒像,则 b>0 时成正像。由上式可知,垂轴倍率仅决定于共辄面的位置,在一对共辄面上,倍率为常数,故像必和物相似。

当 b<0 时, l和 l’异号,表示物和像处于球面的两侧,像的虚实必须与物一致。当 b>0 时, l和 l’同号,表示物和像处于折射面的同侧,像的虚实与物相反。

当 Ibl >0 时,为放大像,即像比物大;当 Ibl <0,为缩小像。

2.轴向倍率a

于有一定体积的物体,除垂轴倍率外,其轴向也有尺寸,故还有一个轴向倍率。轴向倍率是指光轴土一对共辄点沿轴移动量之间的关系。如果物点沿轴移动一个微小距离 dl。相应地像移动 dl’ ,轴向倍率用希腊字母 α表示,定义为a = dl’ /dl。
a = d l d l ′ = n l ′ 2 n ′ l 2 = n ′ n b 2 a={{dl}\over{dl'}}={{nl'^2}\over{n'l^2}}={{n'}\over{n}}b^2 a=dldl=nl2nl2=nnb2
如果物体是一个正立方体,则因垂轴倍率和轴向倍率的不一致,其像不再是正立方体。还可以看出,折射球面的轴向倍率恒为正值,这表示物点沿轴移动,其像点向同样的方向沿轴移动。

上式只能适用于 d很小的情况下。如果物点沿轴移动有限距离,如下图所示:
在这里插入图片描述
则此距离显然可以用物点移动的始末两A和B点表示。这时的轴向倍率 a ˉ \bar{a} aˉ可表示为:
a ˉ = l 2 ′ − l 1 ′ l 2 − l 1 = n ′ n b 1 b 2 \bar{a}= {{{l'_{2}}-{l'_{1}}}\over{l_{2}}-{l_{1}}}={{n'}\over{n}}b_{1}b_{2} aˉ=l2l1l2l1=nnb1b2
其中 b 1 和 b 2 b_{1}和b_{2} b1b2分别为 A 1 , A 2 A_{1},A_{2} A1,A2两对应点之间的垂轴放大率。

3.角倍率g

在近光轴以内,通过物点的光线经过折射后,必然通过相应的像点,这样一对共辄光线与光轴的夹角 u’和u 的比值即为角倍率,用希腊字母g表示为:
g = u ′ u g={u'\over {u}} g=uu
利用关系式 l u = l ′ u ′ lu=l'u' lu=lu得:
g = l l ′ g={l\over {l'}} g=ll

g = n n ′ ⋅ 1 b g={n\over {n'}}·{1\over {b}} g=nnb1

4.三个倍率间的关系

a g = n ′ n b 2 ⋅ n n ′ ⋅ 1 b = b ag= {{n'}\over{n}}b^2· {n\over {n'}}·{1\over {b}} =b ag=nnb2nnb1=b

5. 拉格朗日赫姆霍兹不变量(拉霍不变量)

在公式 b = y ′ y = n l ′ n ′ l b={y' \over y}={{nl'}\over{n'l}} b=yy=nlnl中,利用 g = l l ′ = u ′ u g={l\over {l'}}={u'\over {u}} g=ll=uu得:
n u y = n ′ u ′ y ′ = J nuy=n'u'y'=J nuy=nuy=J
此式称为拉格朗日报姆霍兹恒等式,简称拉赫公式。其表示为不变量形式,在一对共轭平面内,物高 y、孔径角 u和折射率 n乘积是一个常数,用 J表示。 J的单位应是 rad·mm,一般不给出单位,只给出数值,在具体运算中要考虑单位。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Carifee.

您的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值